Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 215, Number 2, Pages 289–296
DOI: https://doi.org/10.4213/tmf10473
(Mi tmf10473)
 

This article is cited in 3 scientific papers (total in 3 papers)

Variational formulation of the problem on vibrations of a beam with a moving spring-loaded support

V. L. Litvinovab

a Samara State Technical University, Samara, Russia
b Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (350 kB) Citations (3)
References:
Abstract: We pose the problem of vibrations of a beam with a moving spring-loaded support carrying an attached mass. When the support is not absolutely rigid, energy exchange occurs through the moving boundary. As a result, there is a difficulty in writing the boundary conditions. To pose the problem, we use Hamilton's variational principle and take the viscoelastic properties of the beam material into account. The problem posed includes a differential equation for vibrations, initial conditions for a bent axis of the beam and for the added mass, and boundary conditions. The conditions on the moving boundary are written as ratios between the values of the function and its derivatives to the left and right of the boundary.
Keywords: oscillations of a beam with a moving spring support, boundary condition, variational principle.
Received: 09.02.2023
Revised: 21.02.2023
English version:
Theoretical and Mathematical Physics, 2023, Volume 215, Issue 2, Pages 709–715
DOI: https://doi.org/10.1134/S0040577923050094
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. L. Litvinov, “Variational formulation of the problem on vibrations of a beam with a moving spring-loaded support”, TMF, 215:2 (2023), 289–296; Theoret. and Math. Phys., 215:2 (2023), 709–715
Citation in format AMSBIB
\Bibitem{Lit23}
\by V.~L.~Litvinov
\paper Variational formulation of the~problem on vibrations of a~beam with a~moving spring-loaded support
\jour TMF
\yr 2023
\vol 215
\issue 2
\pages 289--296
\mathnet{http://mi.mathnet.ru/tmf10473}
\crossref{https://doi.org/10.4213/tmf10473}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4602486}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...215..709L}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 215
\issue 2
\pages 709--715
\crossref{https://doi.org/10.1134/S0040577923050094}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85160085617}
Linking options:
  • https://www.mathnet.ru/eng/tmf10473
  • https://doi.org/10.4213/tmf10473
  • https://www.mathnet.ru/eng/tmf/v215/i2/p289
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:154
    Full-text PDF :16
    Russian version HTML:95
    References:26
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024