Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 216, Number 3, Pages 519–531
DOI: https://doi.org/10.4213/tmf10465
(Mi tmf10465)
 

Composite operators of stochastic model A

D. Davletbaevaa, M. Hnatičbcd, M. V. Komarovaa, T. Lučivjanskýc, L. Mižišinc, M. Yu. Nalimovab

a Saint Petersburg State University, St. Petersburg, Russia
b Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
c Faculty of Science, Šafárik University, Košice, Slovakia
d Institute of Experimental Physics SAS, Košice, Slovakia
References:
Abstract: By means of the field-theoretic renormalization group, we study the damping of the viscosity coefficient near the superfluid phase transition. We use the fact that in the infrared region, the complex model used to describe the phase transition belongs to the same universality class as the well-known stochastic model A. This allows us to determine the critical behavior of viscosity using composite operators for model A. Our analysis is based on the $\varepsilon$-expansion near the upper critical dimension $d_{\mathrm c} =4$ of model A. The critical exponent of viscosity is then calculated from the critical dimensions of composite operators of massless two-component model A. In particular, we present results for critical dimensions of a selected class of composite operators with the canonical dimension $8$ to the leading order.
Keywords: superfluidity, viscosity, renormalization group, composite operators, critical dimension, critical point, phase transition.
Funding agency Grant number
Slovak Grant Agency VEGA 1/0535/21
Foundation for the Development of Theoretical Physics and Mathematics BASIS 19-1-1-35-1
This work was supported by VEGA grant No. 1/0535/21 of the Ministry of Education, Science, Research and Sport of the Slovak Republic and by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” (grant No. 19-1-1-35-1).
Received: 01.02.2023
Revised: 17.05.2023
English version:
Theoretical and Mathematical Physics, 2023, Volume 216, Issue 3, Pages 1349–1359
DOI: https://doi.org/10.1134/S004057792309009X
Bibliographic databases:
Document Type: Article
PACS: 05.10.Cc , 64.60.Ht
MSC: 82C27, 82C28
Language: Russian
Citation: D. Davletbaeva, M. Hnatič, M. V. Komarova, T. Lučivjanský, L. Mižišin, M. Yu. Nalimov, “Composite operators of stochastic model A”, TMF, 216:3 (2023), 519–531; Theoret. and Math. Phys., 216:3 (2023), 1349–1359
Citation in format AMSBIB
\Bibitem{DavGnaKom23}
\by D.~Davletbaeva, M.~Hnati{\v{c}}, M.~V.~Komarova, T.~Lu{\v{c}}ivjansk\'y, L.~Mi{\v z}i{\v s}in, M.~Yu.~Nalimov
\paper Composite operators of stochastic model~A
\jour TMF
\yr 2023
\vol 216
\issue 3
\pages 519--531
\mathnet{http://mi.mathnet.ru/tmf10465}
\crossref{https://doi.org/10.4213/tmf10465}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4634830}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...216.1349D}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 216
\issue 3
\pages 1349--1359
\crossref{https://doi.org/10.1134/S004057792309009X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85172369764}
Linking options:
  • https://www.mathnet.ru/eng/tmf10465
  • https://doi.org/10.4213/tmf10465
  • https://www.mathnet.ru/eng/tmf/v216/i3/p519
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:142
    Full-text PDF :15
    Russian version HTML:42
    References:21
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024