Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 216, Number 2, Pages 326–349
DOI: https://doi.org/10.4213/tmf10438
(Mi tmf10438)
 

This article is cited in 1 scientific paper (total in 1 paper)

Solving the modified Camassa–Holm equation via the inverse scattering transform

Hui Mao, Yu Qian, Yuanyuan Miao

School of Mathematics and Statistics, Nanning Normal University, Nanning, Guangxi, China
Full-text PDF (758 kB) Citations (1)
References:
Abstract: With the aid of the reciprocal transformation and the associated equation, we study the inverse scattering transform with a matrix Riemann–Hilbert problem for the modified Camassa–Holm (mCH) equation with nonzero boundary conditions (NZBC) at infinity. In terms of a suitable uniformization variable, the direct and inverse scattering problems are presented for the associated modified Camassa–Holm (amCH) equation. By means of the reciprocal transformation and the reconstruction formula for the potential of the amCH equation, we present the $N$-soliton solution for the mCH equation with NZBC. As applications, various solutions including both bright and dark types, smooth soliton solutions, singular soliton solutions, and multi-valued singular soliton solutions of the mCH equation and their interactions are exhibited.
Keywords: modified Camassa–Holm equation, reciprocal transformation, inverse scattering transform, soliton solutions.
Funding agency Grant number
Natural Science Foundation of Guangxi Zhuang autonomous region 2022GXNSFAA035598
National Natural Science Foundation of China 12261061
11905110
This work is supported by the Natural Science Foundation of Guangxi Zhuang autonomous region, China (grant No. 2022GXNSFAA035598) and the National Natural Science Foundation of China (grant Nos. 12261061 and 11905110).
Received: 12.01.2023
Revised: 17.02.2023
English version:
Theoretical and Mathematical Physics, 2023, Volume 216, Issue 2, Pages 1189–1208
DOI: https://doi.org/10.1134/S004057792308010X
Bibliographic databases:
Document Type: Article
MSC: 37K10; 35Q51
Language: Russian
Citation: Hui Mao, Yu Qian, Yuanyuan Miao, “Solving the modified Camassa–Holm equation via the inverse scattering transform”, TMF, 216:2 (2023), 326–349; Theoret. and Math. Phys., 216:2 (2023), 1189–1208
Citation in format AMSBIB
\Bibitem{MaoYuMia23}
\by Hui~Mao, Yu~Qian, Yuanyuan~Miao
\paper Solving the~modified Camassa--Holm equation via the~inverse scattering transform
\jour TMF
\yr 2023
\vol 216
\issue 2
\pages 326--349
\mathnet{http://mi.mathnet.ru/tmf10438}
\crossref{https://doi.org/10.4213/tmf10438}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4634817}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...216.1189M}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 216
\issue 2
\pages 1189--1208
\crossref{https://doi.org/10.1134/S004057792308010X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85169085725}
Linking options:
  • https://www.mathnet.ru/eng/tmf10438
  • https://doi.org/10.4213/tmf10438
  • https://www.mathnet.ru/eng/tmf/v216/i2/p326
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :6
    Russian version HTML:44
    References:32
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024