Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 214, Number 3, Pages 517–528
DOI: https://doi.org/10.4213/tmf10418
(Mi tmf10418)
 

This article is cited in 1 scientific paper (total in 1 paper)

Machine learning of the well-known things

V. V. Dolotinabc, A. Yu. Morozovabc, A. V. Popolitovabc

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
b Alikhanov Institute for Theoretical and Experimental Physics, National Research Centre "Kurchatov Institute", Noscow, Russia
c Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
Full-text PDF (458 kB) Citations (1)
References:
Abstract: Machine learning (ML) in its current form implies that the answer to any problem can be well approximated by a function of a very peculiar form: a specially adjusted iteration of Heaviside theta-functions. It is natural to ask whether the answers to questions that we already know can be naturally represented in this form. We provide elementary and yet nonevident examples showing that this is indeed possible, and suggest to look for a systematic reformulation of existing knowledge in an ML-consistent way. The success or failure of these attempts can shed light on a variety of problems, both scientific and epistemological.
Keywords: exact approaches to QFT, nonlinear algebra, machine learning, steepest descent method.
Funding agency Grant number
Russian Science Foundation 21-12-00400
This work supported in part by the Russian Science Foundation (grant No. 21-12-00400).
Received: 02.12.2022
Revised: 06.12.2022
English version:
Theoretical and Mathematical Physics, 2023, Volume 214, Issue 3, Pages 446–455
DOI: https://doi.org/10.1134/S0040577923030091
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. V. Dolotin, A. Yu. Morozov, A. V. Popolitov, “Machine learning of the well-known things”, TMF, 214:3 (2023), 517–528; Theoret. and Math. Phys., 214:3 (2023), 446–455
Citation in format AMSBIB
\Bibitem{DolMorPop23}
\by V.~V.~Dolotin, A.~Yu.~Morozov, A.~V.~Popolitov
\paper Machine learning of the~well-known things
\jour TMF
\yr 2023
\vol 214
\issue 3
\pages 517--528
\mathnet{http://mi.mathnet.ru/tmf10418}
\crossref{https://doi.org/10.4213/tmf10418}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4563420}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...214..446D}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 214
\issue 3
\pages 446--455
\crossref{https://doi.org/10.1134/S0040577923030091}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85160060053}
Linking options:
  • https://www.mathnet.ru/eng/tmf10418
  • https://doi.org/10.4213/tmf10418
  • https://www.mathnet.ru/eng/tmf/v214/i3/p517
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:310
    Full-text PDF :61
    Russian version HTML:199
    References:45
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024