Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 215, Number 2, Pages 318–335
DOI: https://doi.org/10.4213/tmf10411
(Mi tmf10411)
 

This article is cited in 1 scientific paper (total in 1 paper)

Existence of solutions of a system of two ordinary differential equations with a modular–cubic type nonlinearity

B. V. Tischenko

Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (565 kB) Citations (1)
References:
Abstract: We use asymptotic analysis to study the existence of solutions of a one-dimensional nonlinear system of ordinary differential equations with different powers of a small parameter at higher derivatives. A specific feature of the problem is the presence of a discontinuity of the first kind in the right-hand side of the equation $\varepsilon^4u''=f(u,v,x,\varepsilon)$ in the unknown variable $u$ at the level $u=0$, while the right-hand side of the second equation $\varepsilon^2v''=g(u,v,x,\varepsilon)$ is assumed to be smooth in all variables. We define a generalized solution of the problem is in terms of differential inclusions. Conditions under which generalized solutions turn into strong ones are proposed, and the possibility that the $u$-component of the solution intersects zero only once is studied. The existence theorems are proved by using the asymptotic method of differential inequalities.
Keywords: system of nonlinear equations, small parameter, internal layer, upper and lower solutions, solution asymptotics, strong solutions, discontinuity of the first kind.
Received: 20.11.2022
Revised: 18.12.2022
English version:
Theoretical and Mathematical Physics, 2023, Volume 215, Issue 2, Pages 735–750
DOI: https://doi.org/10.1134/S0040577923050124
Bibliographic databases:
Document Type: Article
PACS: 02.30.Hq, 02.30.Mv
Language: Russian
Citation: B. V. Tischenko, “Existence of solutions of a system of two ordinary differential equations with a modular–cubic type nonlinearity”, TMF, 215:2 (2023), 318–335; Theoret. and Math. Phys., 215:2 (2023), 735–750
Citation in format AMSBIB
\Bibitem{Tis23}
\by B.~V.~Tischenko
\paper Existence of solutions of a~system of two ordinary differential equations with a~modular--cubic type nonlinearity
\jour TMF
\yr 2023
\vol 215
\issue 2
\pages 318--335
\mathnet{http://mi.mathnet.ru/tmf10411}
\crossref{https://doi.org/10.4213/tmf10411}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4602489}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...215..735T}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 215
\issue 2
\pages 735--750
\crossref{https://doi.org/10.1134/S0040577923050124}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85160587635}
Linking options:
  • https://www.mathnet.ru/eng/tmf10411
  • https://doi.org/10.4213/tmf10411
  • https://www.mathnet.ru/eng/tmf/v215/i2/p318
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:143
    Full-text PDF :27
    Russian version HTML:98
    References:36
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024