Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 215, Number 2, Pages 190–206
DOI: https://doi.org/10.4213/tmf10404
(Mi tmf10404)
 

This article is cited in 1 scientific paper (total in 1 paper)

Dissipative soliton dynamics of the Landau–Lifshitz–Gilbert equation

V. M. Rothosa, I. K. Mylonasa, T. Bountisb

a School of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
b Center of Integrable Systems, Demidov Yaroslavl State University, Yaroslavl, Russia
Full-text PDF (935 kB) Citations (1)
References:
Abstract: We study ferromagnetic dissipative systems described by the isotropic LLG equation, from the standpoint of their spatially localized dynamical excitations. In particular, we focus on dissipative soliton solutions of a nonlocal NLS equation to which the LLG equation is transformed and use Melnikov's theory to prove the existence of these solutions for sufficiently small dissipation. Next, we employ pseudospectral and PINN (physics-informed neural network) numerical techniques of machine learning to demonstrate the validity of our analytic results. Such localized structures have been detected experimentally in magnetic systems and observed in nano-oscillators, while dissipative magnetic droplet solitons have also been found theoretically and experimentally.
Keywords: ferromagnetic dissipative system, dissipative soliton dynamics, LLG equation, NLS equation.
Funding agency Grant number
Russian Science Foundation 21-71-30011
Ministry of Education and Science of the Republic of Kazakhstan AP08856381
T. Bountis acknowledges that his work on Sections 2, 3.1 and 3.2 of this paper was supported by the Russian Science Foundation project No. 21-71-30011. T. Bountis also acknowledges partial support for Section 3.3 by the grant No. AP08856381 of the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan, for the project of the Institute of Mathematics and Mathematical Modeling MES RK, Almaty, Kazakhstan.
Received: 18.11.2022
Revised: 18.11.2022
English version:
Theoretical and Mathematical Physics, 2023, Volume 215, Issue 2, Pages 622–635
DOI: https://doi.org/10.1134/S0040577923050033
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. M. Rothos, I. K. Mylonas, T. Bountis, “Dissipative soliton dynamics of the Landau–Lifshitz–Gilbert equation”, TMF, 215:2 (2023), 190–206; Theoret. and Math. Phys., 215:2 (2023), 622–635
Citation in format AMSBIB
\Bibitem{RotMylBou23}
\by V.~M.~Rothos, I.~K.~Mylonas, T.~Bountis
\paper Dissipative soliton dynamics of the~Landau--Lifshitz--Gilbert equation
\jour TMF
\yr 2023
\vol 215
\issue 2
\pages 190--206
\mathnet{http://mi.mathnet.ru/tmf10404}
\crossref{https://doi.org/10.4213/tmf10404}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=732443}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...215..622R}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 215
\issue 2
\pages 622--635
\crossref{https://doi.org/10.1134/S0040577923050033}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85160604634}
Linking options:
  • https://www.mathnet.ru/eng/tmf10404
  • https://doi.org/10.4213/tmf10404
  • https://www.mathnet.ru/eng/tmf/v215/i2/p190
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:189
    Full-text PDF :15
    Russian version HTML:106
    References:39
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024