Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 215, Number 2, Pages 242–268
DOI: https://doi.org/10.4213/tmf10403
(Mi tmf10403)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the problem of classifying integrable chains with three independent variables

M. N. Kuznetsova, I. T. Habibullin, A. R. Khakimova

Institute of Mathematics with Computing Center, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
Full-text PDF (565 kB) Citations (3)
References:
Abstract: We discuss a new method for the classification of integrable nonlinear chains with three independent variables using an example of chains in the form $u^j_{n+1,x}=u^j_{n,x}+f(u^{j+1}_{n},u^{j}_n,u^j_{n+1 },u^{j-1}_{n+1})$. This method is based on reductions having the form of systems of differential–difference Darboux-integrable equations. It is well known that the characteristic algebras of Darboux-integrable systems have a finite dimension. The structure of the characteristic algebra is defined by some polynomial $P(\lambda)$. The polynomial degree for the known integrable chains from the class under consideration equals $2$ or $3$. A partial classification is performed in the case $\deg P(\lambda)=2$.
Keywords: three-dimensional chains, characteristic algebras, Darboux integrability, characteristic integrals, integrable reductions.
Funding agency Grant number
Russian Science Foundation 21-11-00006
The study is supported by the Russian Science Foundation grant No. 21-11-00006, https://rscf.ru/en/project/21-11-00006/.
Received: 18.11.2022
Revised: 23.01.2023
English version:
Theoretical and Mathematical Physics, 2023, Volume 215, Issue 2, Pages 667–690
DOI: https://doi.org/10.1134/S0040577923050070
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. N. Kuznetsova, I. T. Habibullin, A. R. Khakimova, “On the problem of classifying integrable chains with three independent variables”, TMF, 215:2 (2023), 242–268; Theoret. and Math. Phys., 215:2 (2023), 667–690
Citation in format AMSBIB
\Bibitem{KuzHabKha23}
\by M.~N.~Kuznetsova, I.~T.~Habibullin, A.~R.~Khakimova
\paper On the~problem of classifying integrable chains with three independent variables
\jour TMF
\yr 2023
\vol 215
\issue 2
\pages 242--268
\mathnet{http://mi.mathnet.ru/tmf10403}
\crossref{https://doi.org/10.4213/tmf10403}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4602484}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...215..667K}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 215
\issue 2
\pages 667--690
\crossref{https://doi.org/10.1134/S0040577923050070}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85160925543}
Linking options:
  • https://www.mathnet.ru/eng/tmf10403
  • https://doi.org/10.4213/tmf10403
  • https://www.mathnet.ru/eng/tmf/v215/i2/p242
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:226
    Full-text PDF :27
    Russian version HTML:144
    References:32
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024