Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 215, Number 1, Pages 111–120
DOI: https://doi.org/10.4213/tmf10399
(Mi tmf10399)
 

Quantum Coulomb problem in a Gaussian time-dependent electric field within the path integral formalism

N. Bedidaa, S. Fadhelab, M. Difallaha, M. Meftahb

a Department of Physics and LABTHOP Laboratory, Faculty of Exact Sciences, University of El Oued, El Oued, Algeria
b Department of Physics and LRPPS Laboratory, Faculty of Mathematics and Matter Sciences, University of Kasdi Merbah, Ouargla, Algeria
References:
Abstract: We solve the Coulomb problem in nonrelativistic quantum mechanics with a charge depending on a parameter that plays the role of time. The choice of this dependence is needed, for example, after certain spatio–temporal transformations when dealing with the interaction of a “small” system (quantum sub-system) with a “large” system, e.g., a bath. These spatio–temporal transformations, combined with path integral, allow us to find the Feynman propagator of the quantum subsystem. To test our approach, we derive the pure Coulomb Green's function as a limit of our result.
Keywords: path integral, perturbation series, Green's function, modified Coulomb potential.
Received: 01.11.2022
Revised: 28.12.2022
English version:
Theoretical and Mathematical Physics, 2023, Volume 215, Issue 1, Pages 551–559
DOI: https://doi.org/10.1134/S0040577923040062
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. Bedida, S. Fadhel, M. Difallah, M. Meftah, “Quantum Coulomb problem in a Gaussian time-dependent electric field within the path integral formalism”, TMF, 215:1 (2023), 111–120; Theoret. and Math. Phys., 215:1 (2023), 551–559
Citation in format AMSBIB
\Bibitem{BedFadDif23}
\by N.~Bedida, S.~Fadhel, M.~Difallah, M.~Meftah
\paper Quantum Coulomb problem in a~Gaussian time-dependent electric field within the~path integral formalism
\jour TMF
\yr 2023
\vol 215
\issue 1
\pages 111--120
\mathnet{http://mi.mathnet.ru/tmf10399}
\crossref{https://doi.org/10.4213/tmf10399}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582629}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...215..551B}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 215
\issue 1
\pages 551--559
\crossref{https://doi.org/10.1134/S0040577923040062}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85153055235}
Linking options:
  • https://www.mathnet.ru/eng/tmf10399
  • https://doi.org/10.4213/tmf10399
  • https://www.mathnet.ru/eng/tmf/v215/i1/p111
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:168
    Full-text PDF :34
    Russian version HTML:98
    References:34
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024