Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 215, Number 1, Pages 74–96
DOI: https://doi.org/10.4213/tmf10377
(Mi tmf10377)
 

On the integrable symplectic map and the $N$-soliton solution of the Toda lattice

Leilei Shi, Dianlou Du

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan, China
References:
Abstract: Three different types of polynomial expansions of the spectral function are used to introduce the Hamiltonian system and the symplectic map associated to the Toda lattice. The integrability of the symplectic map and the Darboux coordinates are discussed. Using the Darboux coordinates, the symplectic map is linearized, and the inversion problem is derived. Finally, inversion is used to provide the $N$-soliton solution for the Toda lattice.
Keywords: symplectic map, integrable system, Darboux coordinates, inversion, soliton solution.
Funding agency Grant number
National Natural Science Foundation of China 11271337
This work was supported by National Natural Science Foundation of China (project No. 11271337).
Received: 22.09.2022
Revised: 17.12.2022
English version:
Theoretical and Mathematical Physics, 2023, Volume 215, Issue 1, Pages 520–539
DOI: https://doi.org/10.1134/S0040577923040049
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Leilei Shi, Dianlou Du, “On the integrable symplectic map and the $N$-soliton solution of the Toda lattice”, TMF, 215:1 (2023), 74–96; Theoret. and Math. Phys., 215:1 (2023), 520–539
Citation in format AMSBIB
\Bibitem{ShiDu23}
\by Leilei~Shi, Dianlou~Du
\paper On the~integrable symplectic map and the~ $N$-soliton solution
of the~Toda lattice
\jour TMF
\yr 2023
\vol 215
\issue 1
\pages 74--96
\mathnet{http://mi.mathnet.ru/tmf10377}
\crossref{https://doi.org/10.4213/tmf10377}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582627}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...215..520S}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 215
\issue 1
\pages 520--539
\crossref{https://doi.org/10.1134/S0040577923040049}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85152923359}
Linking options:
  • https://www.mathnet.ru/eng/tmf10377
  • https://doi.org/10.4213/tmf10377
  • https://www.mathnet.ru/eng/tmf/v215/i1/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:137
    Full-text PDF :24
    Russian version HTML:82
    References:33
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024