Abstract:
We describe generalized translation-invariant $p$-adic Gibbs measures for the Potts model on the Cayley tree of order three, confirming and extending the related results in the literature. We introduce a cube root function over the $p$-adic field $\mathbb{Q}_p$, which enables us to explicitly prescribe all roots of the cubic monomial equation over $\mathbb{Q}_p$.
Citation:
M. Alp, Chin Hee Pah, M. K. Saburov, “The description of generalized translation-invariant $p$-adic
Gibbs measures for the Potts model on the Cayley tree of order
three”, TMF, 214:3 (2023), 469–485; Theoret. and Math. Phys., 214:3 (2023), 406–420
\Bibitem{AlpPahSab23}
\by M.~Alp, Chin~Hee~Pah, M.~K.~Saburov
\paper The~description of generalized translation-invariant $p$-adic
Gibbs measures for the~Potts model on the~Cayley tree of order
three
\jour TMF
\yr 2023
\vol 214
\issue 3
\pages 469--485
\mathnet{http://mi.mathnet.ru/tmf10376}
\crossref{https://doi.org/10.4213/tmf10376}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4563417}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...214..406A}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 214
\issue 3
\pages 406--420
\crossref{https://doi.org/10.1134/S0040577923030066}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85160054942}
Linking options:
https://www.mathnet.ru/eng/tmf10376
https://doi.org/10.4213/tmf10376
https://www.mathnet.ru/eng/tmf/v214/i3/p469
This publication is cited in the following 1 articles:
M. A. K. Ahmad, M. Alp, O. Kozhushkina, J. Long, M. Saburov, J. Trulen, “Trees and Solvability of Depressed Cubics over $\mathbb{Q}_{2}$”, P-Adic Num Ultrametr Anal Appl, 17:1 (2025), 85