Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/AMS-Regular.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1997, Volume 112, Number 1, Pages 170–175
DOI: https://doi.org/10.4213/tmf1037
(Mi tmf1037)
 

This article is cited in 58 scientific papers (total in 58 papers)

Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions

U. A. Rozikov

Romanovskii Mathematical Institute of the National Academy of Sciences of Uzbekistan
References:
Abstract: The disposition order of partition elements into adjacent classes of the group representation of the Cayley tree on its finite index normal subgroups is described. For the inhomogeneous Ising model it is proved that there exist three H0-periodic Gibbs distributions, where H0 is a normal subgroup of finite index.
Received: 05.08.1996
Revised: 16.01.1997
English version:
Theoretical and Mathematical Physics, 1997, Volume 112, Issue 1, Pages 929–933
DOI: https://doi.org/10.1007/BF02634109
Bibliographic databases:
Language: Russian
Citation: U. A. Rozikov, “Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions”, TMF, 112:1 (1997), 170–175; Theoret. and Math. Phys., 112:1 (1997), 929–933
Citation in format AMSBIB
\Bibitem{Roz97}
\by U.~A.~Rozikov
\paper Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions
\jour TMF
\yr 1997
\vol 112
\issue 1
\pages 170--175
\mathnet{http://mi.mathnet.ru/tmf1037}
\crossref{https://doi.org/10.4213/tmf1037}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1478908}
\zmath{https://zbmath.org/?q=an:0978.82506}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 112
\issue 1
\pages 929--933
\crossref{https://doi.org/10.1007/BF02634109}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YD92400013}
Linking options:
  • https://www.mathnet.ru/eng/tmf1037
  • https://doi.org/10.4213/tmf1037
  • https://www.mathnet.ru/eng/tmf/v112/i1/p170
  • This publication is cited in the following 58 articles:
    1. Muzaffar M. Rahmatullaev, Zulxumor A. Burxonova, “Constructive Gibbs measures for the Ising model on the Cayley tree”, Reports on Mathematical Physics, 93:3 (2024), 361  crossref
    2. Dilshod O. Egamov, “Periodic and weakly periodic ground states corresponding to the subgroups of index three for the Ising model on the Cayley tree of order three”, Ukr. Mat. Zhurn., 75:6 (2023), 793  crossref
    3. U. A. Rozikov, F. H. Haydarov, “A HC model with countable set of spin values: Uncountable set of Gibbs measures”, Rev. Math. Phys., 35:01 (2023)  crossref
    4. Dilshod O. Egamov, “Periodic and Weakly Periodic Ground States Corresponding to the Subgroups of Index Three for the Ising Model on the Cayley Tree of Order Three”, Ukr Math J, 75:6 (2023), 908  crossref
    5. U. A. Rozikov, I. A. Sattarov, A. M. Tukhtabaev, “Periodic Points of a pp-Adic Operator and their pp-Adic Gibbs Measures”, P-Adic Num Ultrametr Anal Appl, 14:S1 (2022), S30  crossref
    6. M. M. Rahmatullaev, Zh. D. Dekhkonov, “Weakly periodic Gibbs measures for the Ising model on the Cayley tree of order k=2k=2”, Theoret. and Math. Phys., 206:2 (2021), 185–198  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    7. Rahmatullaev M.M. Egamov D.O. Haydarov F.H., “Periodic and Weakly Periodic Ground States Corresponding to Subgroups of Index Three For the Ising Model on Cayley Tree”, Rep. Math. Phys., 88:2 (2021), 247–257  isi
    8. M. M. Rakhmatullaev, Zh. D. Dekhkonov, “Suschestvovanie slabo periodicheskikh mer Gibbsa dlya modeli Izinga na dereve Keli poryadka tri”, Vladikavk. matem. zhurn., 23:4 (2021), 77–88  mathnet  crossref
    9. M.M. Rahmatullaev, D.O. Egamov, F.H. Haydarov, “Periodic and weakly periodic ground states corresponding to subgroups of index three for the ising model on cayley tree”, Reports on Mathematical Physics, 88:2 (2021), 247  crossref
    10. Mukhamedov F.M. Rakhmatullaev M.M. Rasulova M.A., “Weakly Periodic Ground States For the Lambda-Model”, Ukr. Math. J., 72:5 (2020), 771–784  crossref  isi
    11. Farrukh M. Mukhamedov, Muzaffar M. Rahmatullaev, M. A. Rasulova, “Slabo periodicheskie osnovnye sostoyaniya dlya λ-modeli”, Ukr. Mat. Zhurn., 72:5 (2020)  crossref
    12. M. A. Rasulova, “Periodic Gibbs measures for the Potts–SOS model on a Cayley tree”, Theoret. and Math. Phys., 199:1 (2019), 586–592  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    13. Yusup Kh. Eshkabilov, Shohruh D. Nodirov, “Positive fixed points of cubic operators on R2 and Gibbs measures”, Zhurn. SFU. Ser. Matem. i fiz., 12:6 (2019), 663–673  mathnet  crossref
    14. U. A. Rozikov, F. Kh. Khaidarov, “Four competing interactions for models with an uncountable set of spin values on a Cayley tree”, Theoret. and Math. Phys., 191:3 (2017), 910–923  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    15. Ganikhodjaev N. Rahmatullaev M. Rodzhan Mohd Hirzie Bin Mohd, “Weakly Periodic Gibbs Measures of the Ising Model on the Cayley Tree of Order Five and Six”, Math. Phys. Anal. Geom., 21:1 (2017), 2  crossref  mathscinet  isi  scopus  scopus  scopus
    16. Rahmatullaev M., “Ising Model on Trees: (K(0)) - Non Translation-Invariant Gibbs Measures”, 37Th International Conference on Quantum Probability and Related Topics (Qp37), Journal of Physics Conference Series, 819, ed. Accardi L. Mukhamedov F. Hee P., IOP Publishing Ltd, 2017, UNSP 012019  crossref  mathscinet  isi  scopus  scopus  scopus
    17. Eshkabilov Yu.Kh. Nodirov Sh.D. Haydarov F.H., “Positive fixed points of quadratic operators and Gibbs measures”, Positivity, 20:4 (2016), 929–943  crossref  mathscinet  zmath  isi  scopus
    18. Eshkabilov Yu.Kh. Bobonazarov Sh.P. Teshaboev R.I., “Translation-invariant Gibbs measures for a model with logarithmic potential on a Cayley tree”, Nanosyst.-Phys. Chem. Math., 7:5 (2016), 893–899  crossref  zmath  isi
    19. Khakimov R.M., “Weakly Periodic Gibbs Measures in the HC-Model for a Normal Divisor of Index Four”, Ukr. Math. J., 67:10 (2016), 1584–1598  crossref  mathscinet  zmath  isi  elib  scopus
    20. Gandolfo D. Rozikov U.A. Ruiz J., “on Four State Hard Core Models on the Cayley Tree”, Markov Process. Relat. Fields, 22:2 (2016), 359–377  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:516
    Full-text PDF :198
    References:69
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025