Abstract:
The disposition order of partition elements into adjacent classes of the group representation of the Cayley tree on its finite index normal subgroups is described. For the inhomogeneous Ising model it is proved that there exist three H0-periodic Gibbs distributions, where H0 is a normal subgroup of finite index.
Citation:
U. A. Rozikov, “Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions”, TMF, 112:1 (1997), 170–175; Theoret. and Math. Phys., 112:1 (1997), 929–933
\Bibitem{Roz97}
\by U.~A.~Rozikov
\paper Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions
\jour TMF
\yr 1997
\vol 112
\issue 1
\pages 170--175
\mathnet{http://mi.mathnet.ru/tmf1037}
\crossref{https://doi.org/10.4213/tmf1037}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1478908}
\zmath{https://zbmath.org/?q=an:0978.82506}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 112
\issue 1
\pages 929--933
\crossref{https://doi.org/10.1007/BF02634109}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YD92400013}
Linking options:
https://www.mathnet.ru/eng/tmf1037
https://doi.org/10.4213/tmf1037
https://www.mathnet.ru/eng/tmf/v112/i1/p170
This publication is cited in the following 58 articles:
Muzaffar M. Rahmatullaev, Zulxumor A. Burxonova, “Constructive Gibbs measures for the Ising model on the Cayley tree”, Reports on Mathematical Physics, 93:3 (2024), 361
Dilshod O. Egamov, “Periodic and weakly periodic ground states corresponding to the subgroups of index three for the Ising model on the Cayley tree of order three”, Ukr. Mat. Zhurn., 75:6 (2023), 793
U. A. Rozikov, F. H. Haydarov, “A HC model with countable set of spin values: Uncountable set of Gibbs measures”, Rev. Math. Phys., 35:01 (2023)
Dilshod O. Egamov, “Periodic and Weakly Periodic Ground States Corresponding to the Subgroups of Index Three for the Ising Model on the Cayley Tree of Order Three”, Ukr Math J, 75:6 (2023), 908
U. A. Rozikov, I. A. Sattarov, A. M. Tukhtabaev, “Periodic Points of a pp-Adic Operator and their pp-Adic Gibbs Measures”, P-Adic Num Ultrametr Anal Appl, 14:S1 (2022), S30
M. M. Rahmatullaev, Zh. D. Dekhkonov, “Weakly periodic Gibbs measures for the Ising model on the Cayley tree of order k=2k=2”, Theoret. and Math. Phys., 206:2 (2021), 185–198
Rahmatullaev M.M. Egamov D.O. Haydarov F.H., “Periodic and Weakly Periodic Ground States Corresponding to Subgroups of Index Three For the Ising Model on Cayley Tree”, Rep. Math. Phys., 88:2 (2021), 247–257
M. M. Rakhmatullaev, Zh. D. Dekhkonov, “Suschestvovanie slabo periodicheskikh mer Gibbsa dlya modeli Izinga na dereve Keli poryadka tri”, Vladikavk. matem. zhurn., 23:4 (2021), 77–88
M.M. Rahmatullaev, D.O. Egamov, F.H. Haydarov, “Periodic and weakly periodic ground states corresponding to subgroups of index three for the ising model on cayley tree”, Reports on Mathematical Physics, 88:2 (2021), 247
Mukhamedov F.M. Rakhmatullaev M.M. Rasulova M.A., “Weakly Periodic Ground States For the Lambda-Model”, Ukr. Math. J., 72:5 (2020), 771–784
Farrukh M. Mukhamedov, Muzaffar M. Rahmatullaev, M. A. Rasulova, “Slabo periodicheskie osnovnye sostoyaniya dlya λ-modeli”, Ukr. Mat. Zhurn., 72:5 (2020)
M. A. Rasulova, “Periodic Gibbs measures for the Potts–SOS model on a Cayley tree”, Theoret. and Math. Phys., 199:1 (2019), 586–592
Yusup Kh. Eshkabilov, Shohruh D. Nodirov, “Positive fixed points of cubic operators on R2 and Gibbs measures”, Zhurn. SFU. Ser. Matem. i fiz., 12:6 (2019), 663–673
U. A. Rozikov, F. Kh. Khaidarov, “Four competing interactions for models with an uncountable set of
spin values on a Cayley tree”, Theoret. and Math. Phys., 191:3 (2017), 910–923
Ganikhodjaev N. Rahmatullaev M. Rodzhan Mohd Hirzie Bin Mohd, “Weakly Periodic Gibbs Measures of the Ising Model on the Cayley Tree of Order Five and Six”, Math. Phys. Anal. Geom., 21:1 (2017), 2
Rahmatullaev M., “Ising Model on Trees: (K(0)) - Non Translation-Invariant Gibbs Measures”, 37Th International Conference on Quantum Probability and Related Topics (Qp37), Journal of Physics Conference Series, 819, ed. Accardi L. Mukhamedov F. Hee P., IOP Publishing Ltd, 2017, UNSP 012019
Eshkabilov Yu.Kh. Nodirov Sh.D. Haydarov F.H., “Positive fixed points of quadratic operators and Gibbs measures”, Positivity, 20:4 (2016), 929–943
Eshkabilov Yu.Kh. Bobonazarov Sh.P. Teshaboev R.I., “Translation-invariant Gibbs measures for a model with logarithmic potential on a Cayley tree”, Nanosyst.-Phys. Chem. Math., 7:5 (2016), 893–899
Khakimov R.M., “Weakly Periodic Gibbs Measures in the HC-Model for a Normal Divisor of Index Four”, Ukr. Math. J., 67:10 (2016), 1584–1598
Gandolfo D. Rozikov U.A. Ruiz J., “on Four State Hard Core Models on the Cayley Tree”, Markov Process. Relat. Fields, 22:2 (2016), 359–377