Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 214, Number 1, Pages 3–29
DOI: https://doi.org/10.4213/tmf10367
(Mi tmf10367)
 

This article is cited in 7 scientific papers (total in 7 papers)

Lagrangian manifolds and the construction of asymptotics for (pseudo)differential equations with localized right-hand sides

A. Yu. Anikina, S. Yu. Dobrokhotova, V. E. Nazaikinskiia, M. Rouleuxb

a Ishlinsky Institute for Problems in Mechanics of the RAS, Moscow, Russia
b Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
References:
Abstract: We develop a method for constructing semiclassical asymptotic solutions of inhomogeneous partial differential and pseudodifferential equations with localized right-hand sides. These problems are related to the asymptotics of Green's function for this type of operators, in particular, for the Helmholtz equation, which has been studied in numerous papers. The method is based on a constructive description of the corresponding Lagrangian manifolds and on the recently proposed new representations of the Maslov canonical operator in a neighborhood of Lagrangian singularities (caustics and caustic sets). The method underlies an analytic-numerical algorithm for constructing efficient asymptotic solutions to problems of the above-mentioned type in various fields of physics and continuum mechanics.
Keywords: equation with right-hand side, Lagrangian manifold, semiclassical asymptotics, canonical operator.
Funding agency Grant number
Russian Foundation for Basic Research 17-51-150006 НЦНИ_а
Ministry of Education and Science of the Russian Federation АААА-А20-120011690131-7
The work was supported in part by the RFBR–CNRS (grant No. 17-51-150006) and by the Government program (contract no. AAAA-A20-120011690131-7).
Received: 13.09.2022
Revised: 13.09.2022
English version:
Theoretical and Mathematical Physics, 2023, Volume 214, Issue 1, Pages 1–23
DOI: https://doi.org/10.1134/S0040577923010014
Bibliographic databases:
Document Type: Article
MSC: 81Q20, 53D12
Language: Russian
Citation: A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, M. Rouleux, “Lagrangian manifolds and the construction of asymptotics for (pseudo)differential equations with localized right-hand sides”, TMF, 214:1 (2023), 3–29; Theoret. and Math. Phys., 214:1 (2023), 1–23
Citation in format AMSBIB
\Bibitem{AniDobNaz23}
\by A.~Yu.~Anikin, S.~Yu.~Dobrokhotov, V.~E.~Nazaikinskii, M.~Rouleux
\paper Lagrangian manifolds and the~construction of asymptotics for (pseudo)differential equations with~localized right-hand sides
\jour TMF
\yr 2023
\vol 214
\issue 1
\pages 3--29
\mathnet{http://mi.mathnet.ru/tmf10367}
\crossref{https://doi.org/10.4213/tmf10367}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538885}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...214....1A}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 214
\issue 1
\pages 1--23
\crossref{https://doi.org/10.1134/S0040577923010014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85146777775}
Linking options:
  • https://www.mathnet.ru/eng/tmf10367
  • https://doi.org/10.4213/tmf10367
  • https://www.mathnet.ru/eng/tmf/v214/i1/p3
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:313
    Full-text PDF :51
    Russian version HTML:251
    References:42
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024