Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 214, Number 2, Pages 243–267
DOI: https://doi.org/10.4213/tmf10360
(Mi tmf10360)
 

Multi-point passage probabilities and Green's functions for SLE${}_{8/3}$

O. V. Alekseev

Chebyshev Laboratory, Department of Mathematics and Mechanics, St. Petersburg State University, Saint-Petersburg, Russia
References:
Abstract: We consider a loop representation of the $O(n)$ model at the critical point. In the case $n=0$, the model reduces to statistical ensembles of self-avoiding loops, which can be described by Schramm–Loewner evolution (SLE) with $\kappa=8/3$. In this limit, the $O(n=0)$ model corresponds to a logarithmic conformal field theory (LCFT) with the central charge $c=0$. We study the LCFT correlation functions in the upper half-plane containing several twist operators in the bulk and a pair of the $\Phi_{1,2}$ boundary operators. By using a Coulomb gas representation for the correlation functions, we obtain explicit results for the probabilities of the SLE${}_{8/3}$ trace to pass in various ways about $N\geq 1$ marked points. When the points approach each other pairwise, the probabilities reduce to multipoint SLE Green's functions. We propose an explicit representation for the Green's functions in terms of the correlation functions of the bulk $\Phi_{3,1}$ and boundary $\Phi_{1,2}$ operators.
Keywords: Schramm–Loewner evolution, conformal field theory.
Funding agency Grant number
Russian Science Foundation 19-71-30002
The work is supported by the Russian Science Foundation (grant No. 19-71-30002).
Received: 03.09.2022
Revised: 03.09.2022
English version:
Theoretical and Mathematical Physics, 2023, Volume 214, Issue 2, Pages 210–230
DOI: https://doi.org/10.1134/S004057792302006X
Bibliographic databases:
Document Type: Article
PACS: 02.30.Fn, 11.25.Hf, 05.40.-a
MSC: 30E15, 33C70, 81T40
Language: Russian
Citation: O. V. Alekseev, “Multi-point passage probabilities and Green's functions for SLE${}_{8/3}$”, TMF, 214:2 (2023), 243–267; Theoret. and Math. Phys., 214:2 (2023), 210–230
Citation in format AMSBIB
\Bibitem{Ale23}
\by O.~V.~Alekseev
\paper Multi-point passage probabilities and Green's functions for SLE${}_{8/3}$
\jour TMF
\yr 2023
\vol 214
\issue 2
\pages 243--267
\mathnet{http://mi.mathnet.ru/tmf10360}
\crossref{https://doi.org/10.4213/tmf10360}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4563405}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...214..210A}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 214
\issue 2
\pages 210--230
\crossref{https://doi.org/10.1134/S004057792302006X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85149325902}
Linking options:
  • https://www.mathnet.ru/eng/tmf10360
  • https://doi.org/10.4213/tmf10360
  • https://www.mathnet.ru/eng/tmf/v214/i2/p243
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:128
    Full-text PDF :15
    Russian version HTML:90
    References:26
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024