Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 214, Number 2, Pages 179–197
DOI: https://doi.org/10.4213/tmf10356
(Mi tmf10356)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotic expansions for a class of singular integrals emerging in nonlinear wave systems

A. V. Dymov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Full-text PDF (586 kB) Citations (1)
References:
Abstract: We find asymptotic expansions as $\nu\to 0$ for integrals of the form $\int_{\mathbb{R}^d}F(x)/(\omega^2(x)+\nu^2)\,dx$, where sufficiently smooth functions $F$ and $\omega$ satisfy natural assumptions on their behavior at infinity and all critical points of $\omega$ in the set $\{\omega(x)=0\}$ are nondegenerate. These asymptotic expansions play a crucial role in analyzing stochastic models for nonlinear waves systems. We generalize a result of Kuksin that a similar asymptotic expansion occurs in a particular case where $\omega$ is a nondegenerate quadratic form of signature $(d/2,d/2)$ with even $d$.
Keywords: singular integral, asymptotic analysis, wave turbulence, nonlinear waves system.
Funding agency Grant number
Russian Science Foundation 19-71-30012
This work was supported by the Russian Science Foundation under grant no. 19-71-30012, https://rscf.ru/project/19-71-30012/.
Received: 20.08.2022
Revised: 19.09.2022
English version:
Theoretical and Mathematical Physics, 2023, Volume 214, Issue 2, Pages 153–169
DOI: https://doi.org/10.1134/S0040577923020010
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Dymov, “Asymptotic expansions for a class of singular integrals emerging in nonlinear wave systems”, TMF, 214:2 (2023), 179–197; Theoret. and Math. Phys., 214:2 (2023), 153–169
Citation in format AMSBIB
\Bibitem{Dym23}
\by A.~V.~Dymov
\paper Asymptotic expansions for a~class of singular integrals emerging in nonlinear wave systems
\jour TMF
\yr 2023
\vol 214
\issue 2
\pages 179--197
\mathnet{http://mi.mathnet.ru/tmf10356}
\crossref{https://doi.org/10.4213/tmf10356}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4563400}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...214..153D}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 214
\issue 2
\pages 153--169
\crossref{https://doi.org/10.1134/S0040577923020010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85149277478}
Linking options:
  • https://www.mathnet.ru/eng/tmf10356
  • https://doi.org/10.4213/tmf10356
  • https://www.mathnet.ru/eng/tmf/v214/i2/p179
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:247
    Full-text PDF :37
    Russian version HTML:164
    References:28
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024