Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 213, Number 1, Pages 149–162
DOI: https://doi.org/10.4213/tmf10341
(Mi tmf10341)
 

This article is cited in 1 scientific paper (total in 1 paper)

Multiple mirrors and the JKLMR conjecture

A. A. Belavinab, B. A. Ereminbcd

a Landau Institute for Theoretical Physics of Russian Academy of Sciences, Chernogolovka, Russia
b Kharkevich Institute for Information Transmission Problems, Moscow, Russia
c Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
d Skolkovo Institute of Science and Technology, Moscow, Russia
Full-text PDF (419 kB) Citations (1)
References:
Abstract: We address the problem of the fulfillment of the conjecture proposed by Jockers et al. (JKLMR conjecture) on the equality of the partition function of a supersymmetric gauged linear sigma model on the sphere $S^2$ and the exponential of the Kähler potential on the moduli space of Calabi–Yau manifolds. The problem is considered for a specific class of Calabi–Yau manifolds that does not belong to the Fermat type class. We show that the JKLMR conjecture holds when a Calabi–Yau manifold $X(1)$ of such type has a mirror partner $Y(1)$ in a weighted projective space that also admits a Calabi–Yau manifold of Fermat type $Y(2)$. Moreover, the mirror $X(2)$ for $Y(2)$ has the same special geometry on the moduli space of complex structures as the original $X(1)$.
Keywords: Calabi–Yau manifold, mirror symmetry, multiple mirrors, Calabi–Yau moduli space.
Received: 29.07.2022
Revised: 29.07.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 213, Issue 1, Pages 1441–1452
DOI: https://doi.org/10.1134/S0040577922100105
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Belavin, B. A. Eremin, “Multiple mirrors and the JKLMR conjecture”, TMF, 213:1 (2022), 149–162; Theoret. and Math. Phys., 213:1 (2022), 1441–1452
Citation in format AMSBIB
\Bibitem{BelEre22}
\by A.~A.~Belavin, B.~A.~Eremin
\paper Multiple mirrors and the~JKLMR conjecture
\jour TMF
\yr 2022
\vol 213
\issue 1
\pages 149--162
\mathnet{http://mi.mathnet.ru/tmf10341}
\crossref{https://doi.org/10.4213/tmf10341}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538864}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...213.1441B}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 213
\issue 1
\pages 1441--1452
\crossref{https://doi.org/10.1134/S0040577922100105}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85140466363}
Linking options:
  • https://www.mathnet.ru/eng/tmf10341
  • https://doi.org/10.4213/tmf10341
  • https://www.mathnet.ru/eng/tmf/v213/i1/p149
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :40
    References:37
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024