Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 213, Number 3, Pages 538–554
DOI: https://doi.org/10.4213/tmf10327
(Mi tmf10327)
 

Kinetic coefficients in a time-dependent Green's function formalism at finite temperature

V. A. Krivorola, M. Yu. Nalimovab

a Saint Petersburg State University, Saint Petersburg, Russia
b Bogoliubov Laboratory for Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
References:
Abstract: We discuss microscopic foundations of dissipation arising in a model Fermi or Bose system with weak local interaction. We consider the dynamics of equilibrium fluctuations in the Keldysh–Schwinger formalism and discuss the relation between dissipation and pinch singularities of perturbation theory diagrams. Using the Dyson equation, we define and calculate the dissipation parameter in the two-loop approximation. We show that this parameter is analogous to Onsager's kinetic coefficient and is associated with decay in the quasiparticle spectrum.
Keywords: quantum field theory, statistical mechanics, time-dependent Green's functions at finite temperature, kinetic coefficient.
Funding agency Grant number
Foundation for the Development of Theoretical Physics and Mathematics BASIS 19-1-1-35-1
The paper was supported by the “Basis” foundation, grant No. 19-1-1-35-1 “New approaches to renormalization group studies of quantum phase transitions to superfluid and superconduction states”.
Received: 18.06.2022
Revised: 04.07.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 213, Issue 3, Pages 1774–1788
DOI: https://doi.org/10.1134/S0040577922120108
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Krivorol, M. Yu. Nalimov, “Kinetic coefficients in a time-dependent Green's function formalism at finite temperature”, TMF, 213:3 (2022), 538–554; Theoret. and Math. Phys., 213:3 (2022), 1774–1788
Citation in format AMSBIB
\Bibitem{KriNal22}
\by V.~A.~Krivorol, M.~Yu.~Nalimov
\paper Kinetic coefficients in a~time-dependent Green's function formalism at finite temperature
\jour TMF
\yr 2022
\vol 213
\issue 3
\pages 538--554
\mathnet{http://mi.mathnet.ru/tmf10327}
\crossref{https://doi.org/10.4213/tmf10327}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538883}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...213.1774K}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 213
\issue 3
\pages 1774--1788
\crossref{https://doi.org/10.1134/S0040577922120108}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85144908287}
Linking options:
  • https://www.mathnet.ru/eng/tmf10327
  • https://doi.org/10.4213/tmf10327
  • https://www.mathnet.ru/eng/tmf/v213/i3/p538
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:190
    Full-text PDF :52
    References:41
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024