Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 213, Number 2, Pages 370–410
DOI: https://doi.org/10.4213/tmf10323
(Mi tmf10323)
 

This article is cited in 6 scientific papers (total in 6 papers)

Quantum oscillations in the black hole horizon

C. Cordaab, F. Feleppac, F. Tamburinid, I. Licataef

a International Institute for Applicable Mathematics and Information Sciences, B. M. Birla Science Centre, Adarshnagar, Hyderabad, India
b Istituto d’Istruzione Superiore "Carlo Livi", Prato, Italy
c Institute for Theoretical Physics, Utrecht University, Utrecht, The Netherlands
d Zentrum für Kunst und Medientechnologie, Karlsruhe, Germany
e Institute for Scientific Methodology (ISEM), Palermo, Italy
f School of Advanced International Studies for Applied Theoretical and Nonlinear Methodologies of Physics, Bari, Italy
Full-text PDF (711 kB) Citations (6)
References:
Abstract: A quantum model for the Schwarzschild black hole was recently proposed by applying Rosen's quantization approach to the historical Oppenheimer and Snyder gravitational collapse and by setting the constraints on the formation of the Schwarzschild black hole. An interesting picture emerges: the traditional Schwarzschild singularity is replaced by a quantum oscillator describing a nonsingular “two-particle” system where the two components, the “nucleus” and the “electron”, strongly interact with each other through a quantum gravitational interaction. In agreement with the de Broglie hypothesis, the “electron” is interpreted in terms of quantum oscillations of the black-hole horizon. In other words, the Schwarzschild black hole should be considered as a gravitational analogue of the hydrogen atom. In this paper, after a short review of our previous results, we analyze some of the consequences of this approach. We also show that, by performing a correct rescaling of the energy levels, the semiclassical Bohr-like approach to quantum black holes, previously developed by one of the authors (CC), is consistent with the results obtained here for large values of the black-hole principal quantum number. After this, Hawking radiation is analyzed by discussing its connection with the black-hole quantum structure. Finally, we conclude the paper by discussing the black-hole information problem and its possible resolution.
Keywords: quantum black holes, quantum levels, hydrogen atom, information paradox.
Funding agency Grant number
Zentrum für Kunst und Medien
F. Tamburini gratefully acknowledges Zentrum für Kunst und Medien and Peter Weibel for the financial support.
Received: 10.06.2022
Revised: 16.07.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 213, Issue 2, Pages 1632–1664
DOI: https://doi.org/10.1134/S0040577922110083
Bibliographic databases:
Document Type: Article
MSC: 83C57
Language: Russian
Citation: C. Corda, F. Feleppa, F. Tamburini, I. Licata, “Quantum oscillations in the black hole horizon”, TMF, 213:2 (2022), 370–410; Theoret. and Math. Phys., 213:2 (2022), 1632–1664
Citation in format AMSBIB
\Bibitem{CorFelTam22}
\by C.~Corda, F.~Feleppa, F.~Tamburini, I.~Licata
\paper Quantum oscillations in the~black hole horizon
\jour TMF
\yr 2022
\vol 213
\issue 2
\pages 370--410
\mathnet{http://mi.mathnet.ru/tmf10323}
\crossref{https://doi.org/10.4213/tmf10323}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538873}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...213.1632C}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 213
\issue 2
\pages 1632--1664
\crossref{https://doi.org/10.1134/S0040577922110083}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85142508937}
Linking options:
  • https://www.mathnet.ru/eng/tmf10323
  • https://doi.org/10.4213/tmf10323
  • https://www.mathnet.ru/eng/tmf/v213/i2/p370
  • This publication is cited in the following 6 articles:
    1. Baocheng Zhang, Christian Corda, Qingyu Cai, “The Information Loss Problem and Hawking Radiation as Tunneling”, Entropy, 27:2 (2025), 167  crossref
    2. Abdullah Guvendi, Faizuddin Ahmed, “Dirac oscillator in the near-horizon region of BTZ black hole”, Europhysics Letters, 146:1 (2024), 19001  crossref
    3. Charli Chinmayee Pal, Subodha Mishra, Prasanta Kumar Mahapatra, “An analogy between effective potential representing prime numbers and Schwarzschild black hole”, Europhysics Letters, 145:1 (2024), 10001  crossref
    4. L. Hamaide, Th. Torres, “Black hole information recovery from gravitational waves”, Class. Quantum Grav., 40:8 (2023), 085018  crossref  mathscinet
    5. Ch. Corda, “Black hole spectra from Vaz's quantum gravitational collapse”, Fortschritte der Physik, 71:8-9 (2023), 2300028  crossref  mathscinet
    6. Ch. Corda, “Schrödinger and Klein–Gordon theories of black holes from the quantization of the Oppenheimer and Snyder gravitational collapse”, Commun. Theor. Phys., 75:9 (2023), 095405  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:231
    Full-text PDF :70
    References:51
    First page:16
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025