Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 214, Number 2, Pages 211–223
DOI: https://doi.org/10.4213/tmf10314
(Mi tmf10314)
 

This article is cited in 4 scientific papers (total in 4 papers)

Two-component complex modified Korteweg-de Vries equations: new soliton solutions from novel binary Darboux transformation

Rusuo Ye, Yi Zhang

Department of Mathematics, Zhejiang Normal University, Jinhua, China
References:
Abstract: We derive a $2^N\times 2^N$ Lax pair in the form of block matrices for the $N$-component complex modified Korteweg–de Vries (mKdV) equations and construct a novel binary Darboux transformation with $N=2$. Based on Lax pairs and adjoint Lax pairs, we present a new type of Darboux matrices in which eigenvalues could be equal to adjoint eigenvalues. As an illustration, by taking the zero seed solutions, we construct new soliton solutions using the binary Darboux transformation for $2$-component complex mKdV equations with a Lax pair of $4\times 4$ matrix spectral problems. New two- and three-soliton solutions are provided explicitly by choosing appropriate parameters. Furthermore, dynamics and interactions of two- and three-soliton solutions are also explored graphically.
Keywords: two-component complex modified Korteweg–de Vries equations, matrix spectral problem, binary Darboux transformation, soliton solution, Lax pair.
Funding agency Grant number
National Natural Science Foundation of China 11371326
11975145
12271488
This work is supported by the National Natural Science Foundation of China (grant Nos. 11371326, 11975145 and 12271488).
Received: 17.05.2022
Revised: 17.05.2022
English version:
Theoretical and Mathematical Physics, 2023, Volume 214, Issue 2, Pages 183–193
DOI: https://doi.org/10.1134/S0040577923020034
Bibliographic databases:
Document Type: Article
PACS: 05 45 Yv 02 30 lk
Language: Russian
Citation: Rusuo Ye, Yi Zhang, “Two-component complex modified Korteweg-de Vries equations: new soliton solutions from novel binary Darboux transformation”, TMF, 214:2 (2023), 211–223; Theoret. and Math. Phys., 214:2 (2023), 183–193
Citation in format AMSBIB
\Bibitem{YeZha23}
\by Rusuo~Ye, Yi~Zhang
\paper Two-component complex modified Korteweg-de Vries equations: new soliton solutions from novel binary Darboux transformation
\jour TMF
\yr 2023
\vol 214
\issue 2
\pages 211--223
\mathnet{http://mi.mathnet.ru/tmf10314}
\crossref{https://doi.org/10.4213/tmf10314}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4563402}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...214..183Y}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 214
\issue 2
\pages 183--193
\crossref{https://doi.org/10.1134/S0040577923020034}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85149267570}
Linking options:
  • https://www.mathnet.ru/eng/tmf10314
  • https://doi.org/10.4213/tmf10314
  • https://www.mathnet.ru/eng/tmf/v214/i2/p211
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:143
    Full-text PDF :23
    Russian version HTML:91
    References:33
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024