Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 212, Number 3, Pages 429–447
DOI: https://doi.org/10.4213/tmf10302
(Mi tmf10302)
 

This article is cited in 4 scientific papers (total in 4 papers)

Nonprobability Gibbs measures for the HC model with a countable set of spin values for a “wand”-type graph on a Cayley tree

R. M. Khakimovab, M. T. Makhammadalievb

a Romanovskii Institute of Mathematics, UzAS, Tashkent, Uzbekistan
b Namangam State University, Namangan, Uzbekistan
Full-text PDF (553 kB) Citations (4)
References:
Abstract: We study Gibbs measures for the HC model with a countable set $\mathbb Z$ of spin values and a countable set of parameters (i.e., with the activity function $\lambda_i>0$, $i\in \mathbb Z$) in the case of a “wand”-type graph. In this case, analyzing a functional equation that ensures the consistency condition for finite-dimensional Gibbs measures, we obtain the following results. Exact values of the parameter $\lambda_{\mathrm{cr}}$ are determined; it is shown that for $0<\lambda\leq\lambda_{\mathrm{cr}}$, there exists exactly one translation-invariant nonprobabilistic Gibbs measure, and for $\lambda>\lambda_{\mathrm{cr}}$, there exist precisely three such measures on a Cayley tree of order $2$$3$, or $4$. We obtain the uniqueness conditions for $2$-periodic nonprobabilistic Gibbs measures on a Cayley tree of an arbitrary order, as well as exact values of the parameter $\lambda_{\mathrm{cr}}$; we also show that for $\lambda\geq\lambda_{\mathrm{cr}}$, there exists precisely one such a measure, and for $0<\lambda<\lambda_{\mathrm{cr}}$, there exist precisely three such measures on a Cayley tree of order $2$ or $3$.
Keywords: HC model, configuration, Cayley tree, Gibbs measure, nonprobabilistic Gibbs measure, boundary law.
Funding agency Grant number
Ministry of Innovative Development of the Republic of Uzbekistan F-FA-2021-425
The work was supported by the Ministry of Innovation Development of the Republic of Uzbekistan (fundamental project No. F-FA-2021-425).
Received: 15.04.2022
Revised: 04.06.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 212, Issue 3, Pages 1259–1275
DOI: https://doi.org/10.1134/S0040577922090082
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: R. M. Khakimov, M. T. Makhammadaliev, “Nonprobability Gibbs measures for the HC model with a countable set of spin values for a “wand”-type graph on a Cayley tree”, TMF, 212:3 (2022), 429–447; Theoret. and Math. Phys., 212:3 (2022), 1259–1275
Citation in format AMSBIB
\Bibitem{KhaMak22}
\by R.~M.~Khakimov, M.~T.~Makhammadaliev
\paper Nonprobability Gibbs measures for the~HC model with a~countable set of spin values for a~``wand''-type graph on a~Cayley tree
\jour TMF
\yr 2022
\vol 212
\issue 3
\pages 429--447
\mathnet{http://mi.mathnet.ru/tmf10302}
\crossref{https://doi.org/10.4213/tmf10302}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538850}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...212.1259K}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 212
\issue 3
\pages 1259--1275
\crossref{https://doi.org/10.1134/S0040577922090082}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85139255737}
Linking options:
  • https://www.mathnet.ru/eng/tmf10302
  • https://doi.org/10.4213/tmf10302
  • https://www.mathnet.ru/eng/tmf/v212/i3/p429
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:181
    Full-text PDF :36
    References:33
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024