Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 213, Number 2, Pages 320–346
DOI: https://doi.org/10.4213/tmf10296
(Mi tmf10296)
 

This article is cited in 5 scientific papers (total in 5 papers)

Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph

I. T. Habibullin, A. R. Khakimova

Institute of Mathematics with Computing Centre, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa, Russia
Full-text PDF (602 kB) Citations (5)
References:
Abstract: We study the system of discrete equations on the quadrilateral graph. We introduce the notion of the set of independent minimal-order integrals along the characteristic directions, as well as the concept of the characteristic Lie–Rinehart algebra for the system of equations on the graph. We prove that the system admits the complete set of integrals along the considered direction if and only if the dimension of the characteristic algebra corresponding to this direction is finite. In other words, the system is Darboux-integrable if and only if its characteristic algebras in both directions are finite dimensional. As examples of Darboux-integrable systems of discrete equations on quadrilateral graphs we consider reductions of Hirota–Miwa equation, the $Y$-system, and the Kadomtsev–Petviashvili lattice equation and construct the characteristic algebras for them.
Keywords: discrete equations, Darboux-integrability, Lie–Rinehart algebra, integrals, Hirota–Miwa equation, $Y$-system, Kadomtsev–Petviashvili lattice equation.
Funding agency Grant number
Russian Science Foundation 21-11-00006
This research was supported by the Russian Science Foundation grant No. 21-11-00006, https://rscf.ru/project/21-11-00006/.
Received: 11.04.2022
Revised: 31.05.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 213, Issue 2, Pages 1589–1612
DOI: https://doi.org/10.1134/S004057792211006X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. T. Habibullin, A. R. Khakimova, “Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph”, TMF, 213:2 (2022), 320–346; Theoret. and Math. Phys., 213:2 (2022), 1589–1612
Citation in format AMSBIB
\Bibitem{HabKha22}
\by I.~T.~Habibullin, A.~R.~Khakimova
\paper Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph
\jour TMF
\yr 2022
\vol 213
\issue 2
\pages 320--346
\mathnet{http://mi.mathnet.ru/tmf10296}
\crossref{https://doi.org/10.4213/tmf10296}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538871}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...213.1589H}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 213
\issue 2
\pages 1589--1612
\crossref{https://doi.org/10.1134/S004057792211006X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85142431928}
Linking options:
  • https://www.mathnet.ru/eng/tmf10296
  • https://doi.org/10.4213/tmf10296
  • https://www.mathnet.ru/eng/tmf/v213/i2/p320
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:221
    Full-text PDF :61
    References:35
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024