Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 213, Number 3, Pages 495–504
DOI: https://doi.org/10.4213/tmf10282
(Mi tmf10282)
 

This article is cited in 1 scientific paper (total in 1 paper)

Two-dimensional Dirac oscillator in a magnetic field in deformed phase space with minimal-length uncertainty relations

F. A. Dossaa, J. T. Koumagnonb, J. V. Hounguevoub, G. Y. H. Avossevoub

a Faculté des Sciences et Techniques, Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques d'Abomey, Bénin
b Laboratoire de Recherche en Physique Théorique, Institut de Mathématiques et de Sciences Physiques, Université de Porto-Novo, Porto-Novo, Bénin
Full-text PDF (383 kB) Citations (1)
References:
Abstract: We study the dynamics of the Dirac oscillator in a magnetic field. The Heisenberg algebra is constructed in detail in the noncommutative phase space in the presence of minimal length. By means of the Nikiforov–Uvarov method, the energy eigenvalues are obtained exactly and the corresponding wave functions, in momentum space, are expressed in terms of hypergeometric functions.
Keywords: Dirac oscillator, deformed phase space, minimal length, Nikiforov–Uvarov method.
Received: 08.03.2022
Revised: 14.06.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 213, Issue 3, Pages 1738–1746
DOI: https://doi.org/10.1134/S0040577922120078
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: F. A. Dossa, J. T. Koumagnon, J. V. Hounguevou, G. Y. H. Avossevou, “Two-dimensional Dirac oscillator in a magnetic field in deformed phase space with minimal-length uncertainty relations”, TMF, 213:3 (2022), 495–504; Theoret. and Math. Phys., 213:3 (2022), 1738–1746
Citation in format AMSBIB
\Bibitem{DosKouHou22}
\by F.~A.~Dossa, J.~T.~Koumagnon, J.~V.~Hounguevou, G.~Y.~H.~Avossevou
\paper Two-dimensional Dirac oscillator in a~magnetic field in deformed phase space with minimal-length uncertainty relations
\jour TMF
\yr 2022
\vol 213
\issue 3
\pages 495--504
\mathnet{http://mi.mathnet.ru/tmf10282}
\crossref{https://doi.org/10.4213/tmf10282}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538880}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...213.1738D}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 213
\issue 3
\pages 1738--1746
\crossref{https://doi.org/10.1134/S0040577922120078}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85144830407}
Linking options:
  • https://www.mathnet.ru/eng/tmf10282
  • https://doi.org/10.4213/tmf10282
  • https://www.mathnet.ru/eng/tmf/v213/i3/p495
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:153
    Full-text PDF :30
    References:43
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024