|
This article is cited in 1 scientific paper (total in 1 paper)
Two-dimensional Dirac oscillator in a magnetic field in deformed phase space with minimal-length uncertainty relations
F. A. Dossaa, J. T. Koumagnonb, J. V. Hounguevoub, G. Y. H. Avossevoub a Faculté des Sciences et Techniques, Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques d'Abomey, Bénin
b Laboratoire de Recherche en Physique Théorique, Institut de Mathématiques et de Sciences
Physiques, Université de Porto-Novo, Porto-Novo, Bénin
Abstract:
We study the dynamics of the Dirac oscillator in a magnetic field. The Heisenberg algebra is constructed in detail in the noncommutative phase space in the presence of minimal length. By means of the Nikiforov–Uvarov method, the energy eigenvalues are obtained exactly and the corresponding wave functions, in momentum space, are expressed in terms of hypergeometric functions.
Keywords:
Dirac oscillator, deformed phase space, minimal length, Nikiforov–Uvarov method.
Received: 08.03.2022 Revised: 14.06.2022
Citation:
F. A. Dossa, J. T. Koumagnon, J. V. Hounguevou, G. Y. H. Avossevou, “Two-dimensional Dirac oscillator in a magnetic field in deformed phase space with minimal-length uncertainty relations”, TMF, 213:3 (2022), 495–504; Theoret. and Math. Phys., 213:3 (2022), 1738–1746
Linking options:
https://www.mathnet.ru/eng/tmf10282https://doi.org/10.4213/tmf10282 https://www.mathnet.ru/eng/tmf/v213/i3/p495
|
Statistics & downloads: |
Abstract page: | 153 | Full-text PDF : | 30 | References: | 43 | First page: | 15 |
|