Abstract:
We study the dynamics of the Dirac oscillator in a magnetic field. The Heisenberg algebra is constructed in detail in the noncommutative phase space in the presence of minimal length. By means of the Nikiforov–Uvarov method, the energy eigenvalues are obtained exactly and the corresponding wave functions, in momentum space, are expressed in terms of hypergeometric functions.
Citation:
F. A. Dossa, J. T. Koumagnon, J. V. Hounguevou, G. Y. H. Avossevou, “Two-dimensional Dirac oscillator in a magnetic field in deformed phase space with minimal-length uncertainty relations”, TMF, 213:3 (2022), 495–504; Theoret. and Math. Phys., 213:3 (2022), 1738–1746
\Bibitem{DosKouHou22}
\by F.~A.~Dossa, J.~T.~Koumagnon, J.~V.~Hounguevou, G.~Y.~H.~Avossevou
\paper Two-dimensional Dirac oscillator in a~magnetic field in deformed phase space with minimal-length uncertainty relations
\jour TMF
\yr 2022
\vol 213
\issue 3
\pages 495--504
\mathnet{http://mi.mathnet.ru/tmf10282}
\crossref{https://doi.org/10.4213/tmf10282}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538880}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...213.1738D}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 213
\issue 3
\pages 1738--1746
\crossref{https://doi.org/10.1134/S0040577922120078}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85144830407}
Linking options:
https://www.mathnet.ru/eng/tmf10282
https://doi.org/10.4213/tmf10282
https://www.mathnet.ru/eng/tmf/v213/i3/p495
This publication is cited in the following 2 articles:
Md Moniruzzaman, Md Shariful Alam, Rivu Ranjan Mondal, “Classical Dynamical Consequences of the Particle in a Uniform Gravitational Field due to Minimal Length”, Int J Theor Phys, 64:2 (2025)
Léonie Dagoudo, Finagnon Anselme Dossa, Gabriel Yves Hugues Avossevou, “Algebraic solution and thermodynamic properties for the one- and two-dimensional Dirac oscillator with minimal length uncertainty relations”, EPL, 147:1 (2024), 16001