Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 213, Number 1, Pages 41–56
DOI: https://doi.org/10.4213/tmf10277
(Mi tmf10277)
 

Minimal realizations and scaling invariance of the discrete KP hierarchy and its strict version

G. F. Helmincka, V. A. Poberezhnybcd, S. V. Polenkovae

a Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
b National Research University "Higher School of Economics", Moscow, Russia
c Alikhanov Institute for Theoretical and Experimental Physics, National Research Center "Kurchatov Institute,", Moscow, Russia
d Center for Advanced Studies, Skolkovo Institute of Science and Technology, Moscow, Russia
e University of Twente, Enschede, The Netherland
References:
Abstract: The discrete KP hierarchy and its strict version are both deformations of the commutative algebra $k[\Lambda]$ inside the algebra $\mathrm{Ps}\kern1.1pt\Delta$ of pseudo-difference operators, where $\Lambda$ is the $\mathbb{Z}\times\mathbb{Z}$-matrix corresponding to the shift operator and $k=\mathbb{R}$ or $k=\mathbb{C}$. Under these deformations, the matrix coefficients of the elements of $\mathrm{Ps}\kern1.1pt\Delta$ come from a commutative $k$-algebra $R$. We discuss both deformations from a wider perspective and consider them in a presetting instead of a setting. In this more general setup, we present a number of $k$-subalgebras of $R$ that are stable under the basic derivations of $R$ and such that these derivations commute on these $k$-subalgebras. This is used to introduce the minimal realizations of both deformations. We relate these realizations to solutions in different settings and use them to show that both hierarchies possess invariant scaling transformations.
Keywords: pseudo-difference operators, Lax equations, (strict) dKP hierarchy, minimal realizations, scaling transformations.
Received: 02.03.2022
Revised: 16.04.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 213, Issue 1, Pages 1348–1361
DOI: https://doi.org/10.1134/S004057792210004X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. F. Helminck, V. A. Poberezhny, S. V. Polenkova, “Minimal realizations and scaling invariance of the discrete KP hierarchy and its strict version”, TMF, 213:1 (2022), 41–56; Theoret. and Math. Phys., 213:1 (2022), 1348–1361
Citation in format AMSBIB
\Bibitem{HelPobPol22}
\by G.~F.~Helminck, V.~A.~Poberezhny, S.~V.~Polenkova
\paper Minimal realizations and scaling invariance of the~ discrete KP hierarchy and its strict version
\jour TMF
\yr 2022
\vol 213
\issue 1
\pages 41--56
\mathnet{http://mi.mathnet.ru/tmf10277}
\crossref{https://doi.org/10.4213/tmf10277}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538858}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...213.1348H}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 213
\issue 1
\pages 1348--1361
\crossref{https://doi.org/10.1134/S004057792210004X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85140445801}
Linking options:
  • https://www.mathnet.ru/eng/tmf10277
  • https://doi.org/10.4213/tmf10277
  • https://www.mathnet.ru/eng/tmf/v213/i1/p41
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:161
    Full-text PDF :31
    References:30
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024