Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 212, Number 1, Pages 109–128
DOI: https://doi.org/10.4213/tmf10265
(Mi tmf10265)
 

Stability and equivalence of admissible pairs of arbitrary dimension for a compactification of the moduli space of stable vector bundles

N. V. Timofeeva

Center of Integrable Systems, Demidov Yaroslavl State University, Yaroslavl, RussiaUniversity
References:
Abstract: Moduli spaces of stable vector bundles and compactifications of these moduli spaces are closely related to Yang–Mills gauge field theory. This paper is devoted to finding an appropriate compactification of the moduli space of stable vector bundles on an algebraic variety of dimension $\ge 2$. We consider admissible pairs $((\widetilde S, \widetilde L), \widetilde E)$, each of which consists of an $N$-dimensional admissible scheme $\widetilde S$ of some class with a certain ample line bundle $\widetilde L$ and of a vector bundle $\widetilde E$. An admissible pair can be obtained by a transformation (called a resolution) of a torsion-free coherent sheaf $E$ on a nonsingular $N$-dimensional projective algebraic variety $S$ to a vector bundle $\widetilde E$ on a certain projective scheme $\widetilde S$. The notions of stability (semistability) for admissible pairs and of M-equivalence for admissible pairs in the multidimensional case are introduced. We also study relations of the stability (semistability) for admissible pairs to the classical stability (semistability) for coherent sheaves under the resolution and relations of the M-equivalence for semistable admissible pairs to the S-equivalence of coherent sheaves under the resolution. The obtained results are intended for constructing a compactification of the moduli space of stable vector bundles and an ambient moduli space of semistable admissible pairs.
Keywords: moduli space, algebraic coherent sheaves, admissible pairs, vector bundles, nonsingular algebraic variety, projective algebraic variety, $N$-dimensional algebraic variety, moduli of vector bundles, compactification of moduli space.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-886
This work was carried out within the framework of a development program for the Regional Scientific and Educational Mathematical Center, Demidov Yaroslavl State University with financial support from the Ministry of Science and Higher Education of the Russian Federation (Agreement on provision of subsidies from the federal budget No. 075-02-2022-886).
Received: 31.01.2022
Revised: 31.01.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 212, Issue 1, Pages 984–1000
DOI: https://doi.org/10.1134/S004057792207008X
Bibliographic databases:
Document Type: Article
MSC: 14D20, 14D22, 53C07
Language: Russian
Citation: N. V. Timofeeva, “Stability and equivalence of admissible pairs of arbitrary dimension for a compactification of the moduli space of stable vector bundles”, TMF, 212:1 (2022), 109–128; Theoret. and Math. Phys., 212:1 (2022), 984–1000
Citation in format AMSBIB
\Bibitem{Tim22}
\by N.~V.~Timofeeva
\paper Stability and equivalence of admissible pairs of arbitrary dimension for a~compactification of the~moduli space of stable vector bundles
\jour TMF
\yr 2022
\vol 212
\issue 1
\pages 109--128
\mathnet{http://mi.mathnet.ru/tmf10265}
\crossref{https://doi.org/10.4213/tmf10265}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461547}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...212..984T}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 212
\issue 1
\pages 984--1000
\crossref{https://doi.org/10.1134/S004057792207008X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85134954186}
Linking options:
  • https://www.mathnet.ru/eng/tmf10265
  • https://doi.org/10.4213/tmf10265
  • https://www.mathnet.ru/eng/tmf/v212/i1/p109
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :33
    References:41
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024