Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 212, Number 1, Pages 83–94
DOI: https://doi.org/10.4213/tmf10255
(Mi tmf10255)
 

This article is cited in 3 scientific papers (total in 3 papers)

Existence and stability of a stable stationary solution with a boundary layer for a system of reaction–diffusion equations with Neumann boundary conditions

N. N. Nefedov, N. N. Deryugina

Physical Faculty, Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (406 kB) Citations (3)
References:
Abstract: We consider an initial boundary value problem for a singularly perturbed parabolic system of two reaction–diffusion-type equations with Neumann conditions, where the diffusion coefficients are of different degrees of smallness and the right-hand sides need not be quasimonotonic. We obtain an asymptotic approximation of the stationary solution with a boundary layer and prove existence theorems, the asymptotic stability in the sense of Lyapunov, and the local uniqueness of such a solution. The obtained result is applied to a class of problems of chemical kinetics.
Keywords: reaction–diffusion systems, stationary solution, quasimonotonicity conditions, method of differential inequalities, upper and lower solutions, boundary layer, stability in the sense of Lyapunov.
Funding agency Grant number
Russian Science Foundation 18-11-00042
This paper is supported by the Russian Science Foundation grant No. 18-11-00042.
Received: 21.01.2022
Revised: 21.01.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 212, Issue 1, Pages 962–971
DOI: https://doi.org/10.1134/S0040577922070066
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. N. Nefedov, N. N. Deryugina, “Existence and stability of a stable stationary solution with a boundary layer for a system of reaction–diffusion equations with Neumann boundary conditions”, TMF, 212:1 (2022), 83–94; Theoret. and Math. Phys., 212:1 (2022), 962–971
Citation in format AMSBIB
\Bibitem{NefDer22}
\by N.~N.~Nefedov, N.~N.~Deryugina
\paper Existence and stability of a~stable stationary solution with a~boundary layer for a~system of reaction--diffusion equations with Neumann boundary conditions
\jour TMF
\yr 2022
\vol 212
\issue 1
\pages 83--94
\mathnet{http://mi.mathnet.ru/tmf10255}
\crossref{https://doi.org/10.4213/tmf10255}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461545}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...212..962N}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 212
\issue 1
\pages 962--971
\crossref{https://doi.org/10.1134/S0040577922070066}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85134801857}
Linking options:
  • https://www.mathnet.ru/eng/tmf10255
  • https://doi.org/10.4213/tmf10255
  • https://www.mathnet.ru/eng/tmf/v212/i1/p83
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024