Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 211, Number 2, Pages 216–235
DOI: https://doi.org/10.4213/tmf10253
(Mi tmf10253)
 

Quasiharmonic longitudinal wave propagating in a Mindlin–Herrmann rod in a nonlinearly elastic environment

V. I. Erofeev, A. V. Leontieva

Institute for Problems of Mechanical Engineering, Russian Academy of Sciences — a branch of the Federal State Budget Scientific Institution "Federal Research Center of the Institute for Applied Physics, RAS," Nizhnii Novgorod, Russia
References:
Abstract: We consider the modulation instability of quasiharmonic longitudinal waves propagating in a homogeneous rod immersed in a nonlinearly elastic medium. The dynamic behavior of the rod is determined by the Mindlin–Herrmann theory, which refines the technical theory of rods. The accuracy of the model is ensured by describing the motion of the rod particles in the transverse direction and rejecting the hypothesis that the transverse strains due to the axial extension or contraction are proportional to the longitudinal strain. The system of equations describing the longitudinal vibrations of the rod reduces to a single nonlinear fourth-order equation for the longitudinal displacement of the rod particles. The multiscale method is used to derive the nonlinear Schrödinger equation, which is one of the basic equations of nonlinear wave dynamics. The Lighthill criterion is used to determine the domains of modulation instability. It is shown how the boundaries of these domains move as the parameters characterizing the elastic properties of the rod material and the medium nonlinearity change. The influence of the parameters of the system on the wave packets and the main parameters of envelope solitons (amplitude, speed, width) is analyzed.
Keywords: modulation instability, longitudinal wave, Mindlin–Herrmann model, nonlinearly elastic medium, envelope soliton.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0030-2021-0025
Russian Foundation for Basic Research 20-08-00372_а
The work was carried out in the framework of the Federal Target Program for IAP RAS for the fundamental scientific research in 2021–2023, project No. 0030-2021-0025, and was supported by the Russian Foundation for Basic Research Grant No. 20-08-00372_a.
Received: 20.01.2022
Revised: 09.02.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 211, Issue 2, Pages 625–641
DOI: https://doi.org/10.1134/S004057792205004X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Erofeev, A. V. Leontieva, “Quasiharmonic longitudinal wave propagating in a Mindlin–Herrmann rod in a nonlinearly elastic environment”, TMF, 211:2 (2022), 216–235; Theoret. and Math. Phys., 211:2 (2022), 625–641
Citation in format AMSBIB
\Bibitem{EroLeo22}
\by V.~I.~Erofeev, A.~V.~Leontieva
\paper Quasiharmonic longitudinal wave propagating in a~Mindlin--Herrmann rod in a~nonlinearly elastic environment
\jour TMF
\yr 2022
\vol 211
\issue 2
\pages 216--235
\mathnet{http://mi.mathnet.ru/tmf10253}
\crossref{https://doi.org/10.4213/tmf10253}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461522}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...211..625E}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 211
\issue 2
\pages 625--641
\crossref{https://doi.org/10.1134/S004057792205004X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85130730792}
Linking options:
  • https://www.mathnet.ru/eng/tmf10253
  • https://doi.org/10.4213/tmf10253
  • https://www.mathnet.ru/eng/tmf/v211/i2/p216
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024