Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 211, Number 2, Pages 181–199
DOI: https://doi.org/10.4213/tmf10244
(Mi tmf10244)
 

This article is cited in 2 scientific papers (total in 2 papers)

Multiscale model reduction for a thermoelastic model with phase change using a generalized multiscale finite-element method

D. A. Ammosova, V. I. Vasilieva, M. V. Vasil'evab, S. P. Stepanova

a M. K. Ammosov North-Eastern Federal University, Yakutsk, Russia
b Department of Mathematics and Statistics, Texas A&M University, Corpus Christi, Texas, USA
References:
Abstract: The development of the cryolithozone requires building and numerically implementing mathematical models of multiphysics thermoelastic processes involving with first-order phase transitions and occurring in the foundations of engineering structures and buildings. Numerical implementation of such models is associated with computational difficulties due to various types of heterogeneities in applied problems and the nonlinearity of governing equations, which require very fine grids, increasing computational costs. We develop a numerical method for solving a thermoelasticity problem with phase transitions based on the generalized multiscale finite-element method (GMsFEM). The main idea of the GMsFEM is to construct multiscale basis functions that take the medium heterogeneities into account. The approximation on a fine grid is carried out using the finite-element method with standard linear basis functions. To verify the accuracy of the proposed multiscale method, we solve two- and three-dimensional problems in heterogeneous media. Numerical results show that the multiscale method can provide a good approximation to the solution of the thermoelasticity problem with a phase transition on a fine grid with a significant reduction in the dimensionality of the discrete problem.
Keywords: cryolithozone, heterogeneous medium, mathematical modeling, thermoelasticity, phase transition, generalized multiscale finite element method.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FSRG-2021-0015
Russian Science Foundation 20-71-00133
This paper was prepared in the framework of state task No. FSRG-2021-0015. The work of S. P. Stepanov was supported by the Russian Science Foundation grant 20-71-00133.
Received: 10.01.2022
Revised: 04.03.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 211, Issue 2, Pages 595–610
DOI: https://doi.org/10.1134/S0040577922050026
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. A. Ammosov, V. I. Vasiliev, M. V. Vasil'eva, S. P. Stepanov, “Multiscale model reduction for a thermoelastic model with phase change using a generalized multiscale finite-element method”, TMF, 211:2 (2022), 181–199; Theoret. and Math. Phys., 211:2 (2022), 595–610
Citation in format AMSBIB
\Bibitem{AmmVasVas22}
\by D.~A.~Ammosov, V.~I.~Vasiliev, M.~V.~Vasil'eva, S.~P.~Stepanov
\paper Multiscale model reduction for a~thermoelastic model with phase change using a~generalized multiscale finite-element method
\jour TMF
\yr 2022
\vol 211
\issue 2
\pages 181--199
\mathnet{http://mi.mathnet.ru/tmf10244}
\crossref{https://doi.org/10.4213/tmf10244}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461520}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...211..595A}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 211
\issue 2
\pages 595--610
\crossref{https://doi.org/10.1134/S0040577922050026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85130731824}
Linking options:
  • https://www.mathnet.ru/eng/tmf10244
  • https://doi.org/10.4213/tmf10244
  • https://www.mathnet.ru/eng/tmf/v211/i2/p181
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:236
    Full-text PDF :48
    References:57
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024