Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1997, Volume 111, Number 3, Pages 483–496
DOI: https://doi.org/10.4213/tmf1024
(Mi tmf1024)
 

This article is cited in 3 scientific papers (total in 3 papers)

Statistical theory of rapid particles channelling based on the local Boltzmann equation. Correlation matrix of interactions and diffusion function of particles

Yu. A. Kashleva, N. M. Sadykovb

a A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
b Aktau State University
Full-text PDF (281 kB) Citations (3)
References:
Abstract: Based on Bogoliubov's chain of equations the kinetic theory of rapid particles in crystal is developed. For one-particle distribution function under iteraction of particles with thermal oscillations and valent electrons a local kinetic equation is obtained. With the account of the explicit form of the collision term in the kinetic equation the basic characteristic of a subsystem of particles in the dechannelling problem – diffusion function B(ε)B(ε) in the space of transversal energies is found. It is shown that the functional dependence provided by B(ε) is different in three regions of ε, corresponding to channelling, quasichannelling and chaotic motion of particles. It is also shown that the diffusion function has a break when the transversal energy equals to the top of the potential barrier of a channel.
Received: 28.11.1996
English version:
Theoretical and Mathematical Physics, 1997, Volume 111, Issue 3, Pages 779–790
DOI: https://doi.org/10.1007/BF02634066
Bibliographic databases:
Language: Russian
Citation: Yu. A. Kashlev, N. M. Sadykov, “Statistical theory of rapid particles channelling based on the local Boltzmann equation. Correlation matrix of interactions and diffusion function of particles”, TMF, 111:3 (1997), 483–496; Theoret. and Math. Phys., 111:3 (1997), 779–790
Citation in format AMSBIB
\Bibitem{KasSad97}
\by Yu.~A.~Kashlev, N.~M.~Sadykov
\paper Statistical theory of rapid particles channelling based on the local Boltzmann equation. Correlation matrix of interactions and diffusion function of particles
\jour TMF
\yr 1997
\vol 111
\issue 3
\pages 483--496
\mathnet{http://mi.mathnet.ru/tmf1024}
\crossref{https://doi.org/10.4213/tmf1024}
\zmath{https://zbmath.org/?q=an:0978.82515}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 111
\issue 3
\pages 779--790
\crossref{https://doi.org/10.1007/BF02634066}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YC44100014}
Linking options:
  • https://www.mathnet.ru/eng/tmf1024
  • https://doi.org/10.4213/tmf1024
  • https://www.mathnet.ru/eng/tmf/v111/i3/p483
  • This publication is cited in the following 3 articles:
    1. Yu. A. Kashlev, “Thermalization of Displacement Cascades in Solids and the Thermal Spike Model”, Theoret. and Math. Phys., 130:1 (2002), 111–122  mathnet  crossref  crossref  zmath  isi
    2. Yu. A. Kashlev, N. M. Sadykov, “Nonequilibrium statistical thermodynamics of channeled particles: Resonance transitions and dechanneling”, Theoret. and Math. Phys., 116:1 (1998), 856–866  mathnet  crossref  crossref  isi
    3. Yu. A. Kashlev, N. M. Sadykov, “Nonequilibrium statistical thermodynamics of channeled particles: Thermal particles”, Theoret. and Math. Phys., 116:3 (1998), 1083–1093  mathnet  crossref  crossref  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:364
    Full-text PDF :294
    References:58
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025