Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 212, Number 1, Pages 15–32
DOI: https://doi.org/10.4213/tmf10216
(Mi tmf10216)
 

This article is cited in 3 scientific papers (total in 3 papers)

Nonautonomous vector fields on $S^3$: Simple dynamics and wild embedding of separatrices

V. Z. Grines, L. M. Lerman

National Research University "Higher School of Economics" in Nizhny Novgorod,'' Nizhny Novgorod, Russia
Full-text PDF (650 kB) Citations (3)
References:
Abstract: We construct new substantive examples of nonautonomous vector fields on a $3$-dimensional sphere having simple dynamics but nontrivial topology. The construction is based on two ideas: the theory of diffeomorphisms with wild separatrix embedding and the construction of a nonautonomous suspension over a diffeomorphism. As a result, we obtain periodic, almost periodic, or even nonrecurrent vector fields that have a finite number of special integral curves possessing exponential dichotomy on $\mathbb R$ such that among them there is one saddle integral curve (with a $(3,2)$ dichotomy type) with a wildly embedded $2$-dimensional unstable separatrix and a wildly embedded $3$-dimensional stable manifold. All other integral curves tend to these special integral curves as $t\to \pm \infty$. We also construct other vector fields having $k\ge 2$ special saddle integral curves with the tamely embedded $2$-dimensional unstable separatrices forming mildly wild frames in the sense of Debrunner–Fox. In the case of periodic vector fields, the corresponding specific integral curves are periodic with the period of the vector field, and are almost periodic in the case of an almost periodic vector field.
Keywords: nonautonomous vector field, integral curve, uniform equivalence, exponential dichotomy, separatrix, wild embedding.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1931
0729-2020-0036
This research was supported by the Laboratory of Dynamical Systems and Applications of NRU HSE, Ministry of Science and Higher Education of the Russian Federation, grant 075-15-2019-1931. L. M. Lerman was also partially supported by the Ministry of Science and Higher Education of the Russian Federation under grant No. 0729-2020-0036.
Received: 30.11.2021
Revised: 09.12.2021
English version:
Theoretical and Mathematical Physics, 2022, Volume 212, Issue 1, Pages 903–917
DOI: https://doi.org/10.1134/S0040577922070029
Bibliographic databases:
Document Type: Article
MSC: 34A26, 54E15
Language: Russian
Citation: V. Z. Grines, L. M. Lerman, “Nonautonomous vector fields on $S^3$: Simple dynamics and wild embedding of separatrices”, TMF, 212:1 (2022), 15–32; Theoret. and Math. Phys., 212:1 (2022), 903–917
Citation in format AMSBIB
\Bibitem{GriLer22}
\by V.~Z.~Grines, L.~M.~Lerman
\paper Nonautonomous vector fields on $S^3$: Simple dynamics and wild embedding of separatrices
\jour TMF
\yr 2022
\vol 212
\issue 1
\pages 15--32
\mathnet{http://mi.mathnet.ru/tmf10216}
\crossref{https://doi.org/10.4213/tmf10216}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461541}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...212..903G}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 212
\issue 1
\pages 903--917
\crossref{https://doi.org/10.1134/S0040577922070029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85134990614}
Linking options:
  • https://www.mathnet.ru/eng/tmf10216
  • https://doi.org/10.4213/tmf10216
  • https://www.mathnet.ru/eng/tmf/v212/i1/p15
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:197
    Full-text PDF :42
    References:50
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024