Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 213, Number 1, Pages 108–128
DOI: https://doi.org/10.4213/tmf10201
(Mi tmf10201)
 

This article is cited in 3 scientific papers (total in 3 papers)

Elliptic hypergeometric function and $6j$-symbols for the $SL(2,\pmb{\mathbb C})$ group

S. E. Derkachova, G. A. Sarkissianabc, V. P. Spiridonovadb

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
c Yerevan Physics Institute, Yerevan, Armenia
d Laboratory for Mirror Symmetry, National Research University "Higher School of Economics", Moscow, Russia
Full-text PDF (555 kB) Citations (3)
References:
Abstract: We show that the complex hypergeometric function describing $6j$-symbols for the $SL(2,\mathbb C)$ group is a special degeneration of the $V$-function—an elliptic analogue of the Euler–Gauss ${}_2F_1$ hypergeometric function. For this function, we derive mixed difference–recurrence relations as limit forms of the elliptic hypergeometric equation and some symmetry transformations. At the intermediate steps of computations, there emerge a function describing the $6j$-symbols for the Faddeev modular double and the corresponding difference equations and symmetry transformations.
Keywords: $6j$-symbols, $SL(2,\mathbb{C})$ group, elliptic hypergeometric function.
Funding agency Grant number
Russian Science Foundation 19-11-00131
HSE Basic Research Program
This study has been partially funded within the framework of the HSE University Basic Research Program and by the Russian Science Foundation (project No. 19-11-00131).
Received: 18.11.2021
Revised: 18.11.2021
English version:
Theoretical and Mathematical Physics, 2022, Volume 213, Issue 1, Pages 1406–1422
DOI: https://doi.org/10.1134/S0040577922100087
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. E. Derkachov, G. A. Sarkissian, V. P. Spiridonov, “Elliptic hypergeometric function and $6j$-symbols for the $SL(2,\pmb{\mathbb C})$ group”, TMF, 213:1 (2022), 108–128; Theoret. and Math. Phys., 213:1 (2022), 1406–1422
Citation in format AMSBIB
\Bibitem{DerSarSpi22}
\by S.~E.~Derkachov, G.~A.~Sarkissian, V.~P.~Spiridonov
\paper Elliptic hypergeometric function and $6j$-symbols for the~$SL(2,\pmb{\mathbb C})$ group
\jour TMF
\yr 2022
\vol 213
\issue 1
\pages 108--128
\mathnet{http://mi.mathnet.ru/tmf10201}
\crossref{https://doi.org/10.4213/tmf10201}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538862}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...213.1406D}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 213
\issue 1
\pages 1406--1422
\crossref{https://doi.org/10.1134/S0040577922100087}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85140758145}
Linking options:
  • https://www.mathnet.ru/eng/tmf10201
  • https://doi.org/10.4213/tmf10201
  • https://www.mathnet.ru/eng/tmf/v213/i1/p108
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:249
    Full-text PDF :56
    References:41
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024