Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 212, Number 2, Pages 213–233
DOI: https://doi.org/10.4213/tmf10191
(Mi tmf10191)
 

This article is cited in 2 scientific papers (total in 2 papers)

Periodic two-cluster synchronization modes in fully coupled networks of nonlinear oscillators

S. D. Glyzin, A. Yu. Kolesov

Center of Integrable Systems, Demidov Yaroslavl State University, Yaroslavl, Russia
Full-text PDF (524 kB) Citations (2)
References:
Abstract: We consider special systems of ordinary differential equations, the so-called fully coupled networks of nonlinear oscillators. For a given class of systems, we propose methods that allow examining problems of the existence and stability of periodic two-cluster synchronization modes. For any of these modes, the set of oscillators falls into two disjoint classes. Within these classes, complete synchronization of oscillations is observed, and every two oscillators from different classes oscillate asynchronously.
Keywords: fully coupled network of nonlinear oscillators, periodic two-cluster synchronization modes, asymptotics, stability, buffering.
Funding agency Grant number
Russian Science Foundation 22-11-00209
The work was supported by the Russian Science Foundation grant No. 22-11-00209.
Received: 02.11.2021
Revised: 07.12.2021
English version:
Theoretical and Mathematical Physics, 2022, Volume 212, Issue 2, Pages 1073–1091
DOI: https://doi.org/10.1134/S0040577922080049
Bibliographic databases:
Document Type: Article
MSC: 34A34
Language: Russian
Citation: S. D. Glyzin, A. Yu. Kolesov, “Periodic two-cluster synchronization modes in fully coupled networks of nonlinear oscillators”, TMF, 212:2 (2022), 213–233; Theoret. and Math. Phys., 212:2 (2022), 1073–1091
Citation in format AMSBIB
\Bibitem{GlyKol22}
\by S.~D.~Glyzin, A.~Yu.~Kolesov
\paper Periodic two-cluster synchronization modes in fully coupled
networks of nonlinear oscillators
\jour TMF
\yr 2022
\vol 212
\issue 2
\pages 213--233
\mathnet{http://mi.mathnet.ru/tmf10191}
\crossref{https://doi.org/10.4213/tmf10191}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461553}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...212.1073G}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 212
\issue 2
\pages 1073--1091
\crossref{https://doi.org/10.1134/S0040577922080049}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85136951771}
Linking options:
  • https://www.mathnet.ru/eng/tmf10191
  • https://doi.org/10.4213/tmf10191
  • https://www.mathnet.ru/eng/tmf/v212/i2/p213
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:211
    Full-text PDF :23
    References:51
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024