Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 211, Number 1, Pages 105–120
DOI: https://doi.org/10.4213/tmf10181
(Mi tmf10181)
 

This article is cited in 1 scientific paper (total in 1 paper)

Deformed ladder operators for the generalized one- and two-mode squeezed harmonic oscillator in the presence of a minimal length

F. A. Dossaa, G. Y.  H. Avossevoub

a Faculté des Sciences et Techniques, Université Nationale des Sciences, Technologies, Ingénieries et Mathématiques d'Abomey, Abomey, Bénin
b Institut de Mathématiques et de Sciences Physiques, Université d'Abomey-Calavi, Porto-Novo, Bénin
Full-text PDF (625 kB) Citations (1)
References:
Abstract: We construct the deformed ladder operators in the presence of a minimal length to study the one- and two-mode squeezed harmonic oscillator. The generalized Hamiltonian of the system is expressed in terms of a deformed $su(1,1)$ algebra. The realizations of this algebra allow us to convert the purely quantum mechanical problem of the model into a differential equation. By means of the Nikiforov–Uvarov method, the energy eigenvalues are obtained and the corresponding wave functions, in the momentum space, are expressed in terms of hypergeometric functions. Our study shows that the domain of existence of the energy levels is extended and this extension is due to the deformation parameter.
Keywords: harmonic oscillator, minimal length, ladder operators, deformed $su(1,1)$ algebra.
Received: 11.10.2021
Revised: 05.01.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 211, Issue 1, Pages 532–544
DOI: https://doi.org/10.1134/S0040577922040079
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: F. A. Dossa, G. Y.  H. Avossevou, “Deformed ladder operators for the generalized one- and two-mode squeezed harmonic oscillator in the presence of a minimal length”, TMF, 211:1 (2022), 105–120; Theoret. and Math. Phys., 211:1 (2022), 532–544
Citation in format AMSBIB
\Bibitem{DosAvo22}
\by F.~A.~Dossa, G.~Y.~~H.~Avossevou
\paper Deformed ladder operators for the~generalized one- and two-mode squeezed harmonic oscillator in the~presence of a minimal length
\jour TMF
\yr 2022
\vol 211
\issue 1
\pages 105--120
\mathnet{http://mi.mathnet.ru/tmf10181}
\crossref{https://doi.org/10.4213/tmf10181}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461516}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...211..532D}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 211
\issue 1
\pages 532--544
\crossref{https://doi.org/10.1134/S0040577922040079}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129283028}
Linking options:
  • https://www.mathnet.ru/eng/tmf10181
  • https://doi.org/10.4213/tmf10181
  • https://www.mathnet.ru/eng/tmf/v211/i1/p105
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:167
    Full-text PDF :28
    References:53
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024