Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 211, Number 1, Pages 48–64
DOI: https://doi.org/10.4213/tmf10179
(Mi tmf10179)
 

This article is cited in 4 scientific papers (total in 4 papers)

Cauchy matrix scheme for semidiscrete lattice Korteweg–de Vries-type equations

Maebel Mesfuna, Song-Lin Zhaob

a Department of Mathematics, Shanghai University, Shanghai, China
b Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, China
Full-text PDF (897 kB) Citations (4)
References:
Abstract: Based on a determining equation set and master function, we consider a Cauchy matrix scheme for three semidiscrete lattice Korteweg–de Vries-type equations. The Lax integrability of these equations is discussed. Various types of solutions, including soliton solutions, Jordan-block solutions, and mixed solutions are derived by solving the determining equation set. Specifically, we find $1$-soliton, $2$-soliton, and the simplest Jordan-block solutions for the semidiscrete lattice potential Korteweg–de Vries equation.
Keywords: semidiscrete lattice Korteweg–de Vries-type equations, Cauchy matrix approach, Lax integrability, solution.
Funding agency Grant number
National Natural Science Foundation of China 12071432
11401529
Natural Science Foundation of Zhejiang Province LY18A010033
This project is supported by the National Natural Science Foundation of China (grant Nos. 12071432 and 11401529) and the Natural Science Foundation of Zhejiang Province (grant No. LY18A010033).
Received: 08.10.2021
Revised: 05.11.2021
English version:
Theoretical and Mathematical Physics, 2022, Volume 211, Issue 1, Pages 483–497
DOI: https://doi.org/10.1134/S0040577922040043
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Maebel Mesfun, Song-Lin Zhao, “Cauchy matrix scheme for semidiscrete lattice Korteweg–de Vries-type equations”, TMF, 211:1 (2022), 48–64; Theoret. and Math. Phys., 211:1 (2022), 483–497
Citation in format AMSBIB
\Bibitem{MesZha22}
\by Maebel~Mesfun, Song-Lin~Zhao
\paper Cauchy matrix scheme for semidiscrete lattice Korteweg--de~Vries-type equations
\jour TMF
\yr 2022
\vol 211
\issue 1
\pages 48--64
\mathnet{http://mi.mathnet.ru/tmf10179}
\crossref{https://doi.org/10.4213/tmf10179}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461513}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...211..483M}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 211
\issue 1
\pages 483--497
\crossref{https://doi.org/10.1134/S0040577922040043}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128940333}
Linking options:
  • https://www.mathnet.ru/eng/tmf10179
  • https://doi.org/10.4213/tmf10179
  • https://www.mathnet.ru/eng/tmf/v211/i1/p48
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:154
    Full-text PDF :27
    References:46
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024