|
This article is cited in 1 scientific paper (total in 1 paper)
On symmetries of the nonstationary
$\mathrm{P}_\mathrm{II}^{(n)}$ hierarchy and their applications
I. A. Bobrova National Research University "Higher School of Economics," Moscow, Russia
Abstract:
We study auto-Bäcklund transformations of the nonstationary second Painlevé hierarchy $\mathrm{P}_\mathrm{II}^{(n)}$ depending on $n$ parameters: a parameter $\alpha_n$ and times $t_1, \dots, t_{n-1}$. Using generators $s^{(n)}$ and $r^{(n)}$ of these symmetries, we construct an affine Weyl group $W^{(n)}$ and its extension $\widetilde{W}^{(n)}$ associated with the $n$th member of the hierarchy. We determine rational solutions of $\mathrm{P}_\mathrm{II}^{(n)}$ in terms of Yablonskii–Vorobiev-type polynomials $u_m^{(n)}(z)$. We show that Yablonskii–Vorobiev-type polynomials are related to the polynomial $\tau$-function $\tau_m^{(n)}(z)$ and find their determinant representation in the Jacobi–Trudi form.
Keywords:
Painlevé equations, Bäcklund transformations, affine Weyl groups, Yablonskii–Vorobiev polynomials, polynomial $\tau$-functions, Jacobi–Trudi determinants.
Received: 30.09.2021 Revised: 10.04.2022
Citation:
I. A. Bobrova, “On symmetries of the nonstationary
$\mathrm{P}_\mathrm{II}^{(n)}$ hierarchy and their applications”, TMF, 213:1 (2022), 65–94; Theoret. and Math. Phys., 213:1 (2022), 1369–1394
Linking options:
https://www.mathnet.ru/eng/tmf10173https://doi.org/10.4213/tmf10173 https://www.mathnet.ru/eng/tmf/v213/i1/p65
|
Statistics & downloads: |
Abstract page: | 203 | Full-text PDF : | 44 | References: | 39 | First page: | 5 |
|