Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 213, Number 1, Pages 65–94
DOI: https://doi.org/10.4213/tmf10173
(Mi tmf10173)
 

This article is cited in 1 scientific paper (total in 1 paper)

On symmetries of the nonstationary $\mathrm{P}_\mathrm{II}^{(n)}$ hierarchy and their applications

I. A. Bobrova

National Research University "Higher School of Economics," Moscow, Russia
Full-text PDF (762 kB) Citations (1)
References:
Abstract: We study auto-Bäcklund transformations of the nonstationary second Painlevé hierarchy $\mathrm{P}_\mathrm{II}^{(n)}$ depending on $n$ parameters: a parameter $\alpha_n$ and times $t_1, \dots, t_{n-1}$. Using generators $s^{(n)}$ and $r^{(n)}$ of these symmetries, we construct an affine Weyl group $W^{(n)}$ and its extension $\widetilde{W}^{(n)}$ associated with the $n$th member of the hierarchy. We determine rational solutions of $\mathrm{P}_\mathrm{II}^{(n)}$ in terms of Yablonskii–Vorobiev-type polynomials $u_m^{(n)}(z)$. We show that Yablonskii–Vorobiev-type polynomials are related to the polynomial $\tau$-function $\tau_m^{(n)}(z)$ and find their determinant representation in the Jacobi–Trudi form.
Keywords: Painlevé equations, Bäcklund transformations, affine Weyl groups, Yablonskii–Vorobiev polynomials, polynomial $\tau$-functions, Jacobi–Trudi determinants.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00461_a
Ministry of Science and Higher Education of the Russian Federation 075-15-2021-608
This paper is a part of the author's PhD studies at the HSE University and has been carrying out at the Faculty of Mathematics. The author thanks this faculty for giving her such an opportunity. This paper was partially supported by the Russian Foundation for Basic Research grant No. 18-01-00461_a and the International Laboratory of Cluster Geometry, HSE, under the RF Government grant No. 075-15-2021-608.
Received: 30.09.2021
Revised: 10.04.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 213, Issue 1, Pages 1369–1394
DOI: https://doi.org/10.1134/S0040577922100063
Bibliographic databases:
Document Type: Article
MSC: 34M55
Language: Russian
Citation: I. A. Bobrova, “On symmetries of the nonstationary $\mathrm{P}_\mathrm{II}^{(n)}$ hierarchy and their applications”, TMF, 213:1 (2022), 65–94; Theoret. and Math. Phys., 213:1 (2022), 1369–1394
Citation in format AMSBIB
\Bibitem{Bob22}
\by I.~A.~Bobrova
\paper On symmetries of the~nonstationary
$\mathrm{P}_\mathrm{II}^{(n)}$ hierarchy and~their~applications
\jour TMF
\yr 2022
\vol 213
\issue 1
\pages 65--94
\mathnet{http://mi.mathnet.ru/tmf10173}
\crossref{https://doi.org/10.4213/tmf10173}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538860}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...213.1369B}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 213
\issue 1
\pages 1369--1394
\crossref{https://doi.org/10.1134/S0040577922100063}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85140801237}
Linking options:
  • https://www.mathnet.ru/eng/tmf10173
  • https://doi.org/10.4213/tmf10173
  • https://www.mathnet.ru/eng/tmf/v213/i1/p65
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :44
    References:39
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024