Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 210, Number 2, Pages 259–301
DOI: https://doi.org/10.4213/tmf10172
(Mi tmf10172)
 

This article is cited in 4 scientific papers (total in 4 papers)

Split Casimir operator and solutions of the Yang–Baxter equation for the $osp(M|N)$ and $s\ell(M|N)$ Lie superalgebras, higher Casimir operators, and the Vogel parameters

A. P. Isaevab, A. A. Provorovac

a Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
b Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
c Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
Full-text PDF (814 kB) Citations (4)
References:
Abstract: We find the characteristic identities for the split Casimir operator in the defining and adjoint representations of the $osp(M|N)$ and $s\ell(M|N)$ Lie superalgebras. These identities are used to build the projectors onto invariant subspaces of the representation $T^{\otimes 2}$ of the $osp(M|N)$ and $s\ell(M|N)$ Lie superalgebras in the cases where $T$ is the defining or adjoint representation. For the defining representation, the $osp(M|N)$- and $s\ell(M|N)$-invariant solutions of the Yang–Baxter equation are expressed as rational functions of the split Casimir operator. For the adjoint representation, the characteristic identities and invariant projectors obtained are considered from the standpoint of a universal description of Lie superalgebras by means of the Vogel parameterization. We also construct a universal generating function for higher Casimir operators of the $osp(M|N)$ and $s\ell(M|N)$ Lie superalgebras in the adjoint representation.
Keywords: invariant subspace, projector, simple Lie superalgebra, split Casimir operator, Vogel parameters, generating function.
Funding agency Grant number
Russian Science Foundation 19-11-00131
The research was supported by the Russian Science Foundation (Grant No. 19-11-00131).
Received: 26.09.2021
Revised: 02.11.2021
English version:
Theoretical and Mathematical Physics, 2022, Volume 210, Issue 2, Pages 224–260
DOI: https://doi.org/10.1134/S0040577922020064
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. P. Isaev, A. A. Provorov, “Split Casimir operator and solutions of the Yang–Baxter equation for the $osp(M|N)$ and $s\ell(M|N)$ Lie superalgebras, higher Casimir operators, and the Vogel parameters”, TMF, 210:2 (2022), 259–301; Theoret. and Math. Phys., 210:2 (2022), 224–260
Citation in format AMSBIB
\Bibitem{IsaPro22}
\by A.~P.~Isaev, A.~A.~Provorov
\paper Split Casimir operator and solutions of the~Yang--Baxter equation for the~$osp(M|N)$ and $s\ell(M|N)$ Lie superalgebras, higher Casimir operators, and the~Vogel parameters
\jour TMF
\yr 2022
\vol 210
\issue 2
\pages 259--301
\mathnet{http://mi.mathnet.ru/tmf10172}
\crossref{https://doi.org/10.4213/tmf10172}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461495}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...210..224I}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 210
\issue 2
\pages 224--260
\crossref{https://doi.org/10.1134/S0040577922020064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000759620100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85125504405}
Linking options:
  • https://www.mathnet.ru/eng/tmf10172
  • https://doi.org/10.4213/tmf10172
  • https://www.mathnet.ru/eng/tmf/v210/i2/p259
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024