Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 210, Number 3, Pages 485–504
DOI: https://doi.org/10.4213/tmf10164
(Mi tmf10164)
 

This article is cited in 1 scientific paper (total in 1 paper)

From the Wigner function to the $s$-ordered phase-space distribution via a Gaussian noise channel

Yue Zhangab, Shunlong Luocd

a Beijing Academy of Quantum Information Sciences, Beijing, China
b State Key Laboratory of Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, China
c Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
d School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing, China
Full-text PDF (595 kB) Citations (1)
References:
Abstract: Various phase-space distributions, from the celebrated Wigner function, to the Husimi $Q$ function and the Glauber–Sudarshan $P$ distribution, have played an interesting and important role in the phase-space formulation of quantum mechanics in general, and quantum optics in particular. A unified approach to all these distributions based on the notion of the $s$-ordered phase-space distribution was introduced by Cahill and Glauber. With the intention of illuminating the physical meaning of the parameter $s$, we interpret the $s$-ordered phase-space distribution as the Wigner function of a state under the Gaussian noise channel, and thus reveal an intrinsic connection between the $s$-ordered phase-space distribution and the Gaussian noise channel, which yields a physical insight into the $s$-ordered phase-space distribution. In this connection, the parameter $-s/2$ (rather than the original $s$) acquires the role of the noise occurring in the Gaussian noise channel. An alternative representation of the Gaussian noise channel as the scaling-measurement preparation in a coherent states is illuminated. Furthermore, by exploiting the freedom in the parameter $s$, we introduce a computable and experimentally testable quantifier for optical nonclassicality, reveal its basic properties, and illustrate it by typical examples. A simple and convenient criterion for optical nonclassicality in terms of the $s$-ordered phase-space distribution is derived.
Keywords: Wigner function, $s$-ordered phase-space distribution, Gaussian noise channel, noise parameter, nonclassicality.
Funding agency Grant number
National Key Research and Development Program of China 2020YFA071270
National Natural Science Foundation of China 11875317
61833010
China Postdoctoral Science Foundation 2021M690414
Beijing Postdoctoral Research Foundation 2021-ZZ-091
This work was supported by the National Key R&D Program of China, Grant No. 2020YFA0712700, the National Natural Science Foundation of China, Grant Nos. 11875317 and 61833010, China Postdoctoral Science Foundation, Grant No. 2021M690414, and Beijing Postdoctoral Research Foundation, Grant No. 2021-ZZ-091.
Received: 20.08.2021
Revised: 26.10.2021
English version:
Theoretical and Mathematical Physics, 2022, Volume 210, Issue 3, Pages 425–441
DOI: https://doi.org/10.1134/S0040577922030126
Bibliographic databases:
Document Type: Article
PACS: 03.65.Ta, 03.67.-a,
Language: Russian
Citation: Yue Zhang, Shunlong Luo, “From the Wigner function to the $s$-ordered phase-space distribution via a Gaussian noise channel”, TMF, 210:3 (2022), 485–504; Theoret. and Math. Phys., 210:3 (2022), 425–441
Citation in format AMSBIB
\Bibitem{ZhaLuo22}
\by Yue~Zhang, Shunlong~Luo
\paper From the~Wigner function to the~$s$-ordered phase-space distribution via a~Gaussian noise channel
\jour TMF
\yr 2022
\vol 210
\issue 3
\pages 485--504
\mathnet{http://mi.mathnet.ru/tmf10164}
\crossref{https://doi.org/10.4213/tmf10164}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461509}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...210..425Z}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 210
\issue 3
\pages 425--441
\crossref{https://doi.org/10.1134/S0040577922030126}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000772448700012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85138673558}
Linking options:
  • https://www.mathnet.ru/eng/tmf10164
  • https://doi.org/10.4213/tmf10164
  • https://www.mathnet.ru/eng/tmf/v210/i3/p485
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:186
    Full-text PDF :38
    References:48
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024