Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 210, Number 3, Pages 350–374
DOI: https://doi.org/10.4213/tmf10159
(Mi tmf10159)
 

This article is cited in 3 scientific papers (total in 3 papers)

Discrete second-order Ablowitz–Kaup–Newell–Segur equation and its modified form

Shuai Zhanga, Song-Lin Zhaoa, Ying Shib

a Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, China
b Department of Mathematics, Zhejiang University of Science and Technology, Hangzhou, China
Full-text PDF (581 kB) Citations (3)
References:
Abstract: By introducing shift relations satisfied by a matrix $\boldsymbol{r}$, we propose a generalized Cauchy matrix scheme and construct a discrete second-order Ablowitz–Kaup–Newell–Segur equation. A modified form of this equation is given. By applying an appropriate skew continuum limit, we obtain the semi-discrete counterparts of these two discrete equations; in the full continuum limit, we derive continuous nonlinear equations. Solutions, including soliton solutions, Jordan-block solutions, and mixed solutions, of the resulting discrete, semi-discrete, and continuous Ablowitz–Kaup–Newell–Segur-type equations are presented. The reductions to discrete, semi-discrete, and continuous nonlinear Schrödinger equations and modified nonlinear Schrödinger equation are also discussed.
Keywords: second-order AKNS-type equations, discrete models, Cauchy matrix approach, continuum limit, solution.
Funding agency Grant number
National Natural Science Foundation of China 12071432
This project is supported by the National Natural Science Foundation of China (No. 12071432).
Received: 16.08.2021
Revised: 14.09.2021
English version:
Theoretical and Mathematical Physics, 2022, Volume 210, Issue 3, Pages 304–326
DOI: https://doi.org/10.1134/S0040577922030023
Bibliographic databases:
Document Type: Article
MSC: 39A14, 35Q51, 37K40
Language: Russian
Citation: Shuai Zhang, Song-Lin Zhao, Ying Shi, “Discrete second-order Ablowitz–Kaup–Newell–Segur equation and its modified form”, TMF, 210:3 (2022), 350–374; Theoret. and Math. Phys., 210:3 (2022), 304–326
Citation in format AMSBIB
\Bibitem{ZhaZhaShi22}
\by Shuai~Zhang, Song-Lin~Zhao, Ying~Shi
\paper Discrete second-order Ablowitz--Kaup--Newell--Segur equation and its modified form
\jour TMF
\yr 2022
\vol 210
\issue 3
\pages 350--374
\mathnet{http://mi.mathnet.ru/tmf10159}
\crossref{https://doi.org/10.4213/tmf10159}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461499}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...210..304Z}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 210
\issue 3
\pages 304--326
\crossref{https://doi.org/10.1134/S0040577922030023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000772448700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85127211723}
Linking options:
  • https://www.mathnet.ru/eng/tmf10159
  • https://doi.org/10.4213/tmf10159
  • https://www.mathnet.ru/eng/tmf/v210/i3/p350
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:171
    Full-text PDF :32
    References:46
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024