Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1997, Volume 111, Number 3, Pages 369–388
DOI: https://doi.org/10.4213/tmf1015
(Mi tmf1015)
 

This article is cited in 10 scientific papers (total in 10 papers)

Renormgroup symmetries in problems of nonlinear geometrical optics

V. F. Kovalev

Institute for Mathematical Modelling, Russian Academy of Sciences
References:
Abstract: Renormgroup symmetries for a boundary value problem for the system of equations which describes propagation of a powerful radiation in a nonlinear medium in geometrical optics approximation are constructed. With the help of renormgroup symmetries new exact and approximate analytical solutions of nonlinear geometrical optics equations are obtained. Explicit analytical expressions are presented that characterize spatial evolution of a laser beam which has an arbitrary intensity dependence at the boundary of the nonlinear medium.
Received: 06.02.1997
English version:
Theoretical and Mathematical Physics, 1997, Volume 111, Issue 3, Pages 686–702
DOI: https://doi.org/10.1007/BF02634057
Bibliographic databases:
Language: Russian
Citation: V. F. Kovalev, “Renormgroup symmetries in problems of nonlinear geometrical optics”, TMF, 111:3 (1997), 369–388; Theoret. and Math. Phys., 111:3 (1997), 686–702
Citation in format AMSBIB
\Bibitem{Kov97}
\by V.~F.~Kovalev
\paper Renormgroup symmetries in problems of nonlinear geometrical optics
\jour TMF
\yr 1997
\vol 111
\issue 3
\pages 369--388
\mathnet{http://mi.mathnet.ru/tmf1015}
\crossref{https://doi.org/10.4213/tmf1015}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1472215}
\zmath{https://zbmath.org/?q=an:0978.78500}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 111
\issue 3
\pages 686--702
\crossref{https://doi.org/10.1007/BF02634057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YC44100005}
Linking options:
  • https://www.mathnet.ru/eng/tmf1015
  • https://doi.org/10.4213/tmf1015
  • https://www.mathnet.ru/eng/tmf/v111/i3/p369
  • This publication is cited in the following 10 articles:
    1. Tatarinova L.L., Garcia M.E., “Light propagation in media with a highly nonlinear response: An analytical study”, Physica D-Nonlinear Phenomena, 240:9–10 (2011), 894–901  crossref  zmath  adsnasa  isi  elib  scopus  scopus
    2. M. E. Garcia, V. F. Kovalev, L. L. Tatarinova, “Exact and approximate symmetries for light propagation equations with higher order nonlinearity”, Lobachevskii J Math, 31:2 (2010), 123  crossref
    3. V. F. Kovalev, D. V. Shirkov, “Renormalization-group symmetries for solutions of nonlinear boundary value problems”, Phys. Usp., 51:8 (2008), 815–830  mathnet  crossref  crossref  adsnasa  isi  elib  elib
    4. Tatarinova, LL, “Exact solutions of the eikonal equations describing self-focusing in highly nonlinear geometrical optics”, Physical Review A, 78:2 (2008), 021806  crossref  adsnasa  isi  elib  scopus  scopus
    5. Shirkov, DV, “The Bogoliubov renormalization group and solution symmetry in mathematical physics”, Physics Reports-Review Section of Physics Letters, 352:4–6 (2001), 219  crossref  mathscinet  zmath  isi  scopus  scopus
    6. Kovalev, VF, “Approximate transformation groups and renormgroup symmetries”, Nonlinear Dynamics, 22:1 (2000), 73  crossref  mathscinet  zmath  isi  scopus  scopus
    7. Kovalev, VF, “Renormalization-group approach to the problem of light-beam self-focusing”, Physical Review A, 61:3 (2000), 033809  crossref  mathscinet  adsnasa  isi  scopus  scopus
    8. V. F. Kovalev, “Renormalization group analysis for singularities in the wave beam self-focusing problem”, Theoret. and Math. Phys., 119:3 (1999), 719–730  mathnet  crossref  crossref  mathscinet  zmath  isi
    9. V. F. Kovalev, D. V. Shirkov, “Functional self-similarity and renormalization group symmetry in mathematical physics”, Theoret. and Math. Phys., 121:1 (1999), 1315–1332  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. Kovalev V.F., “Computer algebra tools in construction of renormgroup symmetries”, Casc'99: Computer Algebra in Scientific Computing, 1999, 251–267  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:412
    Full-text PDF :207
    References:54
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025