Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 211, Number 3, Pages 361–374
DOI: https://doi.org/10.4213/tmf10147
(Mi tmf10147)
 

A new finite-dimensional Hamiltonian systems with a mixed Poisson structure for the KdV equation

Dianlou Dua, Xue Wangab

a School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan, China
b College of Science, Henan Institute of Engineering, Zhengzhou, Henan, China
References:
Abstract: A Lax pair for the KdV equation is derived by a transformation of the eigenfunction. By a polynomial expansion of the eigenfunction for the resulting Lax pair, finite-dimensional integrable systems can be obtained from the Lax pair. These integrable systems are proved to be the Hamiltonian and are shown to have a new Poisson structure such that the entries of its structure matrix are a mixture of linear and quadratic functions of coordinates. The odd and even functions of the spectral parameter are introduced to build a generating function for conserved integrals. Based on the generating function, the integrability of these Hamiltonian systems is shown.
Keywords: polynomial expansion, Hamiltonian system, Poisson structure, conserved integrals.
Funding agency Grant number
National Natural Science Foundation of China 11271337
This work was supported by National Natural Science Foundation of China (project No. 11271337).
Received: 08.07.2021
Revised: 08.02.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 211, Issue 3, Pages 745–757
DOI: https://doi.org/10.1134/S0040577922060010
Bibliographic databases:
Document Type: Article
PACS: 02.30.Ik, 02.90.+p
Language: Russian
Citation: Dianlou Du, Xue Wang, “A new finite-dimensional Hamiltonian systems with a mixed Poisson structure for the KdV equation”, TMF, 211:3 (2022), 361–374; Theoret. and Math. Phys., 211:3 (2022), 745–757
Citation in format AMSBIB
\Bibitem{DuWan22}
\by Dianlou~Du, Xue~Wang
\paper A new finite-dimensional Hamiltonian systems with a~mixed Poisson structure for the~KdV equation
\jour TMF
\yr 2022
\vol 211
\issue 3
\pages 361--374
\mathnet{http://mi.mathnet.ru/tmf10147}
\crossref{https://doi.org/10.4213/tmf10147}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461532}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...211..745D}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 211
\issue 3
\pages 745--757
\crossref{https://doi.org/10.1134/S0040577922060010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85132563462}
Linking options:
  • https://www.mathnet.ru/eng/tmf10147
  • https://doi.org/10.4213/tmf10147
  • https://www.mathnet.ru/eng/tmf/v211/i3/p361
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :38
    References:58
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024