Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 209, Number 3, Pages 427–437
DOI: https://doi.org/10.4213/tmf10134
(Mi tmf10134)
 

This article is cited in 2 scientific papers (total in 2 papers)

Nonlinear evolutionary Schrödinger equation in the supercritical case

Sh. M. Nasibov

Institute of Applied Mathematics, Baku State University, Baku, Azerbaijan
Full-text PDF (452 kB) Citations (2)
References:
Abstract: We prove that for some initial data, solutions of the Cauchy problem for the nonlinear Schrödinger equation in the supercritical case are destroyed after a finite time, the exact value of which can be estimated from above. Lower bounds are obtained for the rate of destruction of the solution in some norms. A set of initial data is identified for which the solution of the Cauchy problem for the nonlinear Schrödinger equation in the supercritical case exists globally.
Keywords: nonlinear evolutionary Schrödinger equation, Cauchy problem, solution blow-up, blow-up rate, interpolation inequality, global solvability.
Received: 09.06.2021
Revised: 09.06.2021
English version:
Theoretical and Mathematical Physics, 2021, Volume 209, Issue 3, Pages 1683–1692
DOI: https://doi.org/10.1134/S0040577921120035
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Sh. M. Nasibov, “Nonlinear evolutionary Schrödinger equation in the supercritical case”, TMF, 209:3 (2021), 427–437; Theoret. and Math. Phys., 209:3 (2021), 1683–1692
Citation in format AMSBIB
\Bibitem{Nas21}
\by Sh.~M.~Nasibov
\paper Nonlinear evolutionary Schr\"odinger equation in the~supercritical case
\jour TMF
\yr 2021
\vol 209
\issue 3
\pages 427--437
\mathnet{http://mi.mathnet.ru/tmf10134}
\crossref{https://doi.org/10.4213/tmf10134}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...209.1683N}
\elib{https://elibrary.ru/item.asp?id=47548856}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 209
\issue 3
\pages 1683--1692
\crossref{https://doi.org/10.1134/S0040577921120035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000732593900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85121722993}
Linking options:
  • https://www.mathnet.ru/eng/tmf10134
  • https://doi.org/10.4213/tmf10134
  • https://www.mathnet.ru/eng/tmf/v209/i3/p427
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:243
    Full-text PDF :39
    References:65
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024