Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1997, Volume 111, Number 3, Pages 323–334
DOI: https://doi.org/10.4213/tmf1011
(Mi tmf1011)
 

This article is cited in 27 scientific papers (total in 27 papers)

On the one class of the Toda chains

V. E. Adlera, A. B. Shabatb

a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
b L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
References:
Abstract: The main result of our paper is the list of integrable generalizations of the Toda lattice. Apart from known lattices this list contains three new examples. Each lattice from the list gives the Bäcklund transformation for some NLS type system.
Received: 04.03.1997
English version:
Theoretical and Mathematical Physics, 1997, Volume 111, Issue 3, Pages 647–657
DOI: https://doi.org/10.1007/BF02634053
Bibliographic databases:
Language: Russian
Citation: V. E. Adler, A. B. Shabat, “On the one class of the Toda chains”, TMF, 111:3 (1997), 323–334; Theoret. and Math. Phys., 111:3 (1997), 647–657
Citation in format AMSBIB
\Bibitem{AdlSha97}
\by V.~E.~Adler, A.~B.~Shabat
\paper On the one class of the Toda chains
\jour TMF
\yr 1997
\vol 111
\issue 3
\pages 323--334
\mathnet{http://mi.mathnet.ru/tmf1011}
\crossref{https://doi.org/10.4213/tmf1011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1472211}
\zmath{https://zbmath.org/?q=an:0978.37502}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 111
\issue 3
\pages 647--657
\crossref{https://doi.org/10.1007/BF02634053}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YC44100001}
Linking options:
  • https://www.mathnet.ru/eng/tmf1011
  • https://doi.org/10.4213/tmf1011
  • https://www.mathnet.ru/eng/tmf/v111/i3/p323
  • This publication is cited in the following 27 articles:
    1. Suris Yu.B., “Discrete Time Toda Systems”, J. Phys. A-Math. Theor., 51:33 (2018)  crossref  mathscinet  isi
    2. Aminov G., Mironov A., Morozov A., “Modular Properties of 6D (Dell) Systems”, J. High Energy Phys., 2017, no. 11, 023  crossref  mathscinet  isi  scopus  scopus  scopus
    3. V. G. Marikhin, “Three-dimensional lattice of Bäcklund transformations of integrable cases of the Davey–Stewartson system”, Theoret. and Math. Phys., 189:3 (2016), 1718–1725  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    4. Zhang Yu. Zhou R.-G., “A Chain of Type II and Its Exact Solutions”, Chin. Phys. Lett., 33:11 (2016), 110203  crossref  isi  scopus
    5. Boll R., Petrera M., Suris Yu.B., “Multi-Time Lagrangian 1-Forms For Families of Backlund Transformations. Relativistic Toda-Type Systems”, J. Phys. A-Math. Theor., 48:8 (2015), 085203  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    6. Chen Ya., Ismail M.E.H., “Hypergeometric Origins of Diophantine Properties Associated with the Askey Scheme”, Proceedings of the American Mathematical Society, 138:3 (2010), 943–951  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    7. R. I. Yamilov, “Integrability conditions for an analogue of the relativistic Toda chain”, Theoret. and Math. Phys., 151:1 (2007), 492–504  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    8. Vsevolod E. Adler, Alexey B. Shabat, “On the One Class of Hyperbolic Systems”, SIGMA, 2 (2006), 093, 17 pp.  mathnet  crossref  mathscinet  zmath
    9. Yamilov, R, “Symmetries as integrability criteria for differential difference equations”, Journal of Physics A-Mathematical and General, 39:45 (2006), R541  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    10. R. I. Yamilov, “Relativistic Toda Chains and Schlesinger Transformations”, Theoret. and Math. Phys., 139:2 (2004), 623–635  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    11. Adler, VE, “Q(4): Integrable master equation related to an elliptic curve”, International Mathematics Research Notices, 2004, no. 47, 2523  crossref  mathscinet  zmath  isi
    12. Ustinov, NV, “The lattice equations of the Toda type with an interaction between a few neighbourhoods”, Journal of Physics A-Mathematical and General, 37:5 (2004), 1737  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    13. Suris Y.B., “Discrete Lagrangian models”, Discrete Integrable Systems, Lecture Notes in Physics, 644, 2004, 111–184  crossref  mathscinet  zmath  adsnasa  isi
    14. S. D. Vereshchagin, A. V. Yurov, “The Darboux Transformation and Exactly Solvable Cosmological Models”, Theoret. and Math. Phys., 139:3 (2004), 787–800  mathnet  mathnet  crossref  crossref  isi
    15. Cieslinski, JL, “Darboux covariant equations of von Neumann type and their generalizations”, Journal of Mathematical Physics, 44:4 (2003), 1763  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    16. A. K. Svinin, “Integrable Chains and Hierarchies of Differential Evolution Equations”, Theoret. and Math. Phys., 130:1 (2002), 11–24  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    17. A. Gorsky, A. Mironov, Integrable Hierarchies and Modern Physical Theories, 2001, 33  crossref
    18. V. E. Adler, A. B. Shabat, R. I. Yamilov, “Symmetry approach to the integrability problem”, Theoret. and Math. Phys., 125:3 (2000), 1603–1661  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    19. A. B. Shabat, “Third version of the dressing method”, Theoret. and Math. Phys., 121:1 (1999), 1397–1408  mathnet  crossref  crossref  mathscinet  zmath  isi
    20. Marikhin V.G., Shabat A.B., “Hamiltonian theory of Backlund transformations”, Optical Solitons: Theoretical Challenges and Industrial Perspectives, Centre de Physique Des Houches, no. 12, 1999, 19–29  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:664
    Full-text PDF :314
    References:95
    First page:2
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025