Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 208, Number 3, Pages 409–415
DOI: https://doi.org/10.4213/tmf10091
(Mi tmf10091)
 

Fractional derivative method for describing solitons on the surface of deep water

V. I. Avrutskiya, A. M. Ishkhanyanbc, V. P. Krainovd

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
b Russian-Armenian University, Yerevan, Armenia
c Institute for Physical Research NAS of Armenia, Ashtarak, Armenia
d Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
References:
Abstract: The fractional derivative method is used to take wave dispersion into account in the wave equation when describing the propagation of gravitational soliton waves on the surface of deep water. This approach is similar to that used to obtain the Korteweg–de Vries equation for solitons on the surface of shallow water, where the dispersion term in the wave equation is the third derivative of the velocity. It provides an alternative to the well-known approach of Zakharov and others based on the model of the nonlinear Schrödinger equation. The obtained nonlinear integral equation can be solved numerically.
Keywords: fractional derivatives, solitons, deep water, Navier–Stokes equation.
Funding agency Grant number
Russian Foundation for Basic Research 20-52-05012
Armenian National Science and Education Fund PS-5701
State Committee on Science of the Ministry of Education and Science of the Republic of Armenia 20RF-171
This work is supported by the Russian Foundation for Basic Research (Grant No. 20-52-05012), the Committee on Science of Armenia (Grant No. 20RF-171), and the Armenian National Foundation for Science and Education (Grant No. PS-5701).
Received: 08.03.2021
Revised: 17.03.2021
English version:
Theoretical and Mathematical Physics, 2021, Volume 208, Issue 3, Pages 1201–1206
DOI: https://doi.org/10.1134/S0040577921090038
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Avrutskiy, A. M. Ishkhanyan, V. P. Krainov, “Fractional derivative method for describing solitons on the surface of deep water”, TMF, 208:3 (2021), 409–415; Theoret. and Math. Phys., 208:3 (2021), 1201–1206
Citation in format AMSBIB
\Bibitem{AvrIshKra21}
\by V.~I.~Avrutskiy, A.~M.~Ishkhanyan, V.~P.~Krainov
\paper Fractional derivative method for describing solitons on the surface of deep water
\jour TMF
\yr 2021
\vol 208
\issue 3
\pages 409--415
\mathnet{http://mi.mathnet.ru/tmf10091}
\crossref{https://doi.org/10.4213/tmf10091}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...208.1201A}
\elib{https://elibrary.ru/item.asp?id=47096424}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 208
\issue 3
\pages 1201--1206
\crossref{https://doi.org/10.1134/S0040577921090038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000698718800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85115357836}
Linking options:
  • https://www.mathnet.ru/eng/tmf10091
  • https://doi.org/10.4213/tmf10091
  • https://www.mathnet.ru/eng/tmf/v208/i3/p409
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:259
    Full-text PDF :61
    References:80
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024