Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 208, Number 2, Pages 261–281
DOI: https://doi.org/10.4213/tmf10078
(Mi tmf10078)
 

This article is cited in 2 scientific papers (total in 2 papers)

Quantum coin flipping, qubit measurement, and generalized Fibonacci numbers

O. K. Pashaev

Department of Mathematics, Izmir Institute of Technology, Urla, Izmir, Turkey
Full-text PDF (497 kB) Citations (2)
References:
Abstract: The problem of Hadamard quantum coin measurement in $n$ trials, with an arbitrary number of repeated consecutive last states, is formulated in terms of Fibonacci sequences for duplicated states, Tribonacci numbers for triplicated states, and $N$-Bonacci numbers for arbitrary $N$-plicated states. The probability formulas for arbitrary positions of repeated states are derived in terms of the Lucas and Fibonacci numbers. For a generic qubit coin, the formulas are expressed by the Fibonacci and more general, $N$-Bonacci polynomials in qubit probabilities. The generating function for probabilities, the Golden Ratio limit of these probabilities, and the Shannon entropy for corresponding states are determined. Using a generalized Born rule and the universality of the $n$-qubit measurement gate, we formulate the problem in terms of generic $n$-qubit states and construct projection operators in a Hilbert space, constrained on the Fibonacci tree of the states. The results are generalized to qutrit and qudit coins described by generalized Fibonacci-$N$-Bonacci sequences.
Keywords: Fibonacci numbers, quantum coin, qubit, qutrit, qudit, quantum measurement, Tribonacci numbers, $N$-Bonacci numbers.
Funding agency Grant number
Scientific and Technological Research Council of Turkey (TÜBITAK) 116F206
This work was supported in part by the TUBITAK grant 116F206.
Received: 20.02.2021
Revised: 20.02.2021
English version:
Theoretical and Mathematical Physics, 2021, Volume 208, Issue 2, Pages 1075–1092
DOI: https://doi.org/10.1134/S0040577921080079
Bibliographic databases:
Document Type: Article
PACS: 03.67.-a
MSC: 81P45, 11B39
Language: Russian
Citation: O. K. Pashaev, “Quantum coin flipping, qubit measurement, and generalized Fibonacci numbers”, TMF, 208:2 (2021), 261–281; Theoret. and Math. Phys., 208:2 (2021), 1075–1092
Citation in format AMSBIB
\Bibitem{Pas21}
\by O.~K.~Pashaev
\paper Quantum coin flipping, qubit measurement, and generalized
Fibonacci numbers
\jour TMF
\yr 2021
\vol 208
\issue 2
\pages 261--281
\mathnet{http://mi.mathnet.ru/tmf10078}
\crossref{https://doi.org/10.4213/tmf10078}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...208.1075P}
\elib{https://elibrary.ru/item.asp?id=47042166}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 208
\issue 2
\pages 1075--1092
\crossref{https://doi.org/10.1134/S0040577921080079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000686798400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85113143084}
Linking options:
  • https://www.mathnet.ru/eng/tmf10078
  • https://doi.org/10.4213/tmf10078
  • https://www.mathnet.ru/eng/tmf/v208/i2/p261
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:182
    Full-text PDF :59
    References:14
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024