|
This article is cited in 8 scientific papers (total in 8 papers)
Integration of a defocusing nonlinear Schrödinger equation with additional terms
U. B. Muminov, A. B. Khasanov Samarkand State University, Samarkand, Uzbekistan
Abstract:
The inverse spectral problem method is used to integrate the nonlinear Schrödinger equation with some additional terms in the class of infinite-gap periodic functions. We reveal the evolution of spectral data for a periodic Dirac operator whose coefficients solve the Cauchy problem for a nonlinear Schrödinger equation with some additional terms. Several examples are given to illustrate the algorithm described in the paper.
Keywords:
nonlinear Schrödinger equation, Dirac operator, spectral data, inverse spectral problem, system of Dubrovin equations, trace formulas.
Received: 03.02.2021 Revised: 16.05.2021
Citation:
U. B. Muminov, A. B. Khasanov, “Integration of a defocusing nonlinear Schrödinger equation with additional terms”, TMF, 211:1 (2022), 84–104; Theoret. and Math. Phys., 211:1 (2022), 514–531
Linking options:
https://www.mathnet.ru/eng/tmf10073https://doi.org/10.4213/tmf10073 https://www.mathnet.ru/eng/tmf/v211/i1/p84
|
Statistics & downloads: |
Abstract page: | 229 | Full-text PDF : | 39 | References: | 53 | First page: | 16 |
|