Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 207, Number 3, Pages 505–520
DOI: https://doi.org/10.4213/tmf10033
(Mi tmf10033)
 

This article is cited in 1 scientific paper (total in 1 paper)

Nonwandering continuum possessing the Wada property

D. W. Serow

State Institute of Economy, Finance, Law, and Technology, Gatchina, Russia
References:
Abstract: Dynamic systems acting on the plane and possessing the Wada property have been observed. There exist only two topological types, symmetric and antisymmetric, of dissipative dynamic systems with the nonwandering continuum being a common boundary of three regions. An antisymmetric dynamic system with the nonwandering continuum can be transformed into a dynamic system with an invariant vortex street without fixed points. A further factorization procedure allows obtaining a dynamic system having the Wada property with the nonwandering continuum being a common boundary of any finite number of regions. Moreover, following this strategy, it is possible to construct a Birkhoff curve that is a common boundary of two regions (problem $1100$).
Keywords: dynamic system, Wada basin, Wada property, Birkhoff curve, indecomposable continuum (atom), composant, nonwandering set, rotation number, Schnirelmann density, PostScript.
Received: 14.12.2020
Revised: 01.04.2021
English version:
Theoretical and Mathematical Physics, 2021, Volume 207, Issue 3, Pages 841–853
DOI: https://doi.org/10.1134/S0040577921060118
Bibliographic databases:
Document Type: Article
PACS: 02.30.Hq; 05.45.-a
Language: Russian
Citation: D. W. Serow, “Nonwandering continuum possessing the Wada property”, TMF, 207:3 (2021), 505–520; Theoret. and Math. Phys., 207:3 (2021), 841–853
Citation in format AMSBIB
\Bibitem{Ser21}
\by D.~W.~Serow
\paper Nonwandering continuum possessing the~Wada property
\jour TMF
\yr 2021
\vol 207
\issue 3
\pages 505--520
\mathnet{http://mi.mathnet.ru/tmf10033}
\crossref{https://doi.org/10.4213/tmf10033}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...207..841S}
\elib{https://elibrary.ru/item.asp?id=46850779}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 207
\issue 3
\pages 841--853
\crossref{https://doi.org/10.1134/S0040577921060118}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000667702600011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85108882999}
Linking options:
  • https://www.mathnet.ru/eng/tmf10033
  • https://doi.org/10.4213/tmf10033
  • https://www.mathnet.ru/eng/tmf/v207/i3/p505
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:274
    Full-text PDF :56
    References:74
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024