Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 207, Number 2, Pages 293–309
DOI: https://doi.org/10.4213/tmf10032
(Mi tmf10032)
 

This article is cited in 6 scientific papers (total in 6 papers)

Solution with an inner transition layer of a two-dimensional boundary value reaction–diffusion–advection problem with discontinuous reaction and advection terms

N. T. Levashova, N. N. Nefedov, O. A. Nikolaeva

Physical Faculty, Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (475 kB) Citations (6)
References:
Abstract: We study the problem of the existence and asymptotic stability of a stationary solution of an initial boundary value problem for the reaction–diffusion–advection equation assuming that the reaction and advection terms are comparable in size and have a jump along a smooth curve located inside the studied domain. The problem solution has a large gradient in a neighborhood of this curve. We prove theorems on the existence, asymptotic uniqueness, and Lyapunov asymptotic stability for such solutions using the method of upper and lower solutions. To obtain the upper and lower solutions, we use the asymptotic method of differential inequalities that consists in constructing them as modified asymptotic approximations in a small parameter of solutions of these problems. We construct the asymptotic approximation of a solution using a modified Vasil'eva method.
Keywords: reaction–diffusion–advection equation, discontinuous term, method of differential inequalities, upper solution, lower solution, inner transition layer, small parameter.
Funding agency Grant number
Russian Science Foundation 18-11-00042
This research is supported by a grant from the Russian Science Foundation (Project No. 18-11-00042).
Received: 13.12.2020
Revised: 20.01.2021
English version:
Theoretical and Mathematical Physics, 2021, Volume 207, Issue 2, Pages 655–669
DOI: https://doi.org/10.1134/S0040577921050093
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. T. Levashova, N. N. Nefedov, O. A. Nikolaeva, “Solution with an inner transition layer of a two-dimensional boundary value reaction–diffusion–advection problem with discontinuous reaction and advection terms”, TMF, 207:2 (2021), 293–309; Theoret. and Math. Phys., 207:2 (2021), 655–669
Citation in format AMSBIB
\Bibitem{LevNefNik21}
\by N.~T.~Levashova, N.~N.~Nefedov, O.~A.~Nikolaeva
\paper Solution with an inner transition layer of a~two-dimensional boundary value reaction--diffusion--advection problem with discontinuous reaction and advection terms
\jour TMF
\yr 2021
\vol 207
\issue 2
\pages 293--309
\mathnet{http://mi.mathnet.ru/tmf10032}
\crossref{https://doi.org/10.4213/tmf10032}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...207..655L}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 207
\issue 2
\pages 655--669
\crossref{https://doi.org/10.1134/S0040577921050093}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000664263000009}
Linking options:
  • https://www.mathnet.ru/eng/tmf10032
  • https://doi.org/10.4213/tmf10032
  • https://www.mathnet.ru/eng/tmf/v207/i2/p293
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :64
    References:61
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024