Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 207, Number 2, Pages 210–225
DOI: https://doi.org/10.4213/tmf10021
(Mi tmf10021)
 

Singularly perturbed partially dissipative systems of equations

V. F. Butuzov

Physical Faculty, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: We construct an asymptotic expansion in a small parameter of a boundary layer solution of the boundary value problem for a system of two ordinary differential equations, one of which is a second-order equation and the other is a first-order equation with a small parameter at the derivatives in both equations. Such a system arises in chemical kinetics when modeling the stationary process in the case of fast reactions and in the absence of diffusion of one of the reacting substances. A significant feature of the studied problem is that one of the equations of the degenerate system has a triple root. This leads to a qualitative difference in the boundary layer component of the solution compared with the case of simple (single) roots of degenerate equations. The boundary layer becomes multizonal, and the standard algorithm for constructing the boundary layer series turns out to be unsuitable and is replaced with a new algorithm.
Keywords: singularly perturbed boundary value problem with a triple root of the degenerate equation, partially dissipative system, multizone boundary layer.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00424
This research was performed at the Department of Mathematics, Faculty of Physics, Lomonosov Moscow State University, and was supported by the Russian Foundation for Basic Research (Grant No. 18-01-00424).
Received: 06.12.2020
Revised: 31.12.2020
English version:
Theoretical and Mathematical Physics, 2021, Volume 207, Issue 2, Pages 579–593
DOI: https://doi.org/10.1134/S0040577921050044
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. F. Butuzov, “Singularly perturbed partially dissipative systems of equations”, TMF, 207:2 (2021), 210–225; Theoret. and Math. Phys., 207:2 (2021), 579–593
Citation in format AMSBIB
\Bibitem{But21}
\by V.~F.~Butuzov
\paper Singularly perturbed partially dissipative systems of equations
\jour TMF
\yr 2021
\vol 207
\issue 2
\pages 210--225
\mathnet{http://mi.mathnet.ru/tmf10021}
\crossref{https://doi.org/10.4213/tmf10021}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...207..579B}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 207
\issue 2
\pages 579--593
\crossref{https://doi.org/10.1134/S0040577921050044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000664263000004}
Linking options:
  • https://www.mathnet.ru/eng/tmf10021
  • https://doi.org/10.4213/tmf10021
  • https://www.mathnet.ru/eng/tmf/v207/i2/p210
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:231
    Full-text PDF :40
    References:39
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024