Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 207, Number 1, Pages 104–111
DOI: https://doi.org/10.4213/tmf10014
(Mi tmf10014)
 

This article is cited in 3 scientific papers (total in 3 papers)

The number of endpoints of a random walk on a semi-infinite metric path graph

V. L. Chernysheva, D. S. Minenkovb, A. A. Tolchennikovcb

a National Research University "Higher School of Economics", Moscow, Russia
b Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow
c Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (408 kB) Citations (3)
References:
Abstract: We study a semi-infinite metric path graph and construct the long-time asymptotic logarithm of the number of possible endpoints of a random walk.
Keywords: abstract prime number, counting function, Bose–Maslov distribution.
Funding agency Grant number
Russian Science Foundation 16-11-10069
This research is supported by a grant from the Russian Science Foundation (Project No. 16-11-10069).
Received: 25.11.2020
Revised: 25.11.2020
English version:
Theoretical and Mathematical Physics, 2021, Volume 207, Issue 1, Pages 487–493
DOI: https://doi.org/10.1134/S0040577921040073
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. L. Chernyshev, D. S. Minenkov, A. A. Tolchennikov, “The number of endpoints of a random walk on a semi-infinite metric path graph”, TMF, 207:1 (2021), 104–111; Theoret. and Math. Phys., 207:1 (2021), 487–493
Citation in format AMSBIB
\Bibitem{CheMinTol21}
\by V.~L.~Chernyshev, D.~S.~Minenkov, A.~A.~Tolchennikov
\paper The~number of endpoints of a~random walk on a~semi-infinite metric path graph
\jour TMF
\yr 2021
\vol 207
\issue 1
\pages 104--111
\mathnet{http://mi.mathnet.ru/tmf10014}
\crossref{https://doi.org/10.4213/tmf10014}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...207..487C}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 207
\issue 1
\pages 487--493
\crossref{https://doi.org/10.1134/S0040577921040073}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000664262700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85132286068}
Linking options:
  • https://www.mathnet.ru/eng/tmf10014
  • https://doi.org/10.4213/tmf10014
  • https://www.mathnet.ru/eng/tmf/v207/i1/p104
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:261
    Full-text PDF :52
    References:42
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024