Abstract:
We study a semi-infinite metric path graph and construct the long-time asymptotic logarithm of the number of possible endpoints of a random walk.
Keywords:
abstract prime number, counting function, Bose–Maslov distribution.
Citation:
V. L. Chernyshev, D. S. Minenkov, A. A. Tolchennikov, “The number of endpoints of a random walk on a semi-infinite metric path graph”, TMF, 207:1 (2021), 104–111; Theoret. and Math. Phys., 207:1 (2021), 487–493
\Bibitem{CheMinTol21}
\by V.~L.~Chernyshev, D.~S.~Minenkov, A.~A.~Tolchennikov
\paper The~number of endpoints of a~random walk on a~semi-infinite metric path graph
\jour TMF
\yr 2021
\vol 207
\issue 1
\pages 104--111
\mathnet{http://mi.mathnet.ru/tmf10014}
\crossref{https://doi.org/10.4213/tmf10014}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...207..487C}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 207
\issue 1
\pages 487--493
\crossref{https://doi.org/10.1134/S0040577921040073}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000664262700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85132286068}
Linking options:
https://www.mathnet.ru/eng/tmf10014
https://doi.org/10.4213/tmf10014
https://www.mathnet.ru/eng/tmf/v207/i1/p104
This publication is cited in the following 3 articles:
Andrew Eliseev, Vsevolod L. Chernyshev, “Upper bound on saturation time of metric graphs by intervals moving on them”, Journal of Mathematical Analysis and Applications, 531:2 (2024), 127873
M. V. Vakhitov, D.i S. Minenkov, “On logarithmic asymptotics for the number of restricted partitions in the exponential case”, Moscow J. Comb. Number Th., 12:4 (2023), 297
D. S. Minenkov, V. E. Nazaikinskii, T. W. Hilberdink, V. L. Chernyshev, “Restricted partions: the polynomial case”, Funct. Anal. Appl., 56:4 (2022), 299–309