|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Volume 253, Pages 277–295
(Mi tm99)
|
|
|
|
This article is cited in 13 scientific papers (total in 13 papers)
Residual Kernels with Singularities on Coordinate Planes
A. V. Shchupleva, A. K. Tsikha, A. Ygerb a Krasnoyarsk State University
b Université Bordeaux 1
Abstract:
A finite collection of planes $\{E_\nu \}$ in $\mathbb C^d$ is called an atomic family if the top de Rham cohomology group of its complement is generated by a single element. A closed differential form generating this group is called a residual kernel for the atomic family. We construct new residual kernels in the case when $E_\nu$ are coordinate planes such that the complement $\mathbb C^d\setminus \bigcup E_\nu$ admits a toric action with the orbit space being homeomorphic to a compact projective toric variety. They generalize the well-known Bochner–Martinelli and Sorani differential forms. The kernels obtained are used to establish a new formula of integral representations for functions holomorphic in Reinhardt polyhedra.
Received in October 2005
Citation:
A. V. Shchuplev, A. K. Tsikh, A. Yger, “Residual Kernels with Singularities on Coordinate Planes”, Complex analysis and applications, Collected papers, Trudy Mat. Inst. Steklova, 253, Nauka, MAIK «Nauka/Inteperiodika», M., 2006, 277–295; Proc. Steklov Inst. Math., 253 (2006), 256–274
Linking options:
https://www.mathnet.ru/eng/tm99 https://www.mathnet.ru/eng/tm/v253/p277
|
Statistics & downloads: |
Abstract page: | 401 | Full-text PDF : | 124 | References: | 61 |
|