Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Volume 253, Pages 232–240 (Mi tm95)  

This article is cited in 16 scientific papers (total in 17 papers)

Variations of Hartogs' Theorem

E. M. Chirka

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: Hartogs' separate analyticity theorem is extended to functions holomorphic along holomorphic curves that form mutually transversal foliations of the domain of definition of these functions.
Received in October 2005
English version:
Proceedings of the Steklov Institute of Mathematics, 2006, Volume 253, Pages 212–220
DOI: https://doi.org/10.1134/S0081543806020179
Bibliographic databases:
Document Type: Article
UDC: 517.554
Language: Russian
Citation: E. M. Chirka, “Variations of Hartogs' Theorem”, Complex analysis and applications, Collected papers, Trudy Mat. Inst. Steklova, 253, Nauka, MAIK «Nauka/Inteperiodika», M., 2006, 232–240; Proc. Steklov Inst. Math., 253 (2006), 212–220
Citation in format AMSBIB
\Bibitem{Chi06}
\by E.~M.~Chirka
\paper Variations of Hartogs' Theorem
\inbook Complex analysis and applications
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2006
\vol 253
\pages 232--240
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm95}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2338699}
\zmath{https://zbmath.org/?q=an:1351.32005}
\elib{https://elibrary.ru/item.asp?id=13530381}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 253
\pages 212--220
\crossref{https://doi.org/10.1134/S0081543806020179}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748319347}
Linking options:
  • https://www.mathnet.ru/eng/tm95
  • https://www.mathnet.ru/eng/tm/v253/p232
  • This publication is cited in the following 17 articles:
    1. Ye-Won Luke Cho, Springer Proceedings in Mathematics & Statistics, 481, Complex Geometric Analysis, 2025, 35  crossref
    2. Ye-Won Luke Cho, “Localization of Forelli's theorem”, Complex Variables and Elliptic Equations, 69:2 (2024), 185  crossref
    3. Ye-Won Luke Cho, “A New Plurisubharmonic Capacity and Functions Holomorphic Along Holomorphic Vector Fields”, J Geom Anal, 33:8 (2023)  crossref
    4. Sadullaev A., “Holomorphic Continuation of a Formal Series Along Analytic Curves”, Complex Var. Elliptic Equ., 67:2 (2022), 274–283  crossref  mathscinet  isi  scopus
    5. Sadullaev A., “Real Analyticity of a C-Infinity-Germ At the Origin”, Ann. Pol. Math., 2022  crossref  mathscinet  isi
    6. A. S. Sadullaev, “Golomorfnoe prodolzhenie funktsii vdol fiksirovannogo napravleniya (obzor)”, Nauka — tekhnologiya — obrazovanie — matematika — meditsina, SMFN, 68, no. 1, Rossiiskii universitet druzhby narodov, M., 2022, 127–143  mathnet  crossref  mathscinet
    7. Ye-Won Luke Cho, Kang-Tae Kim, “Functions Holomorphic Along a $C^1$ Pencil of Holomorphic Discs”, J Geom Anal, 31:11 (2021), 10634  crossref
    8. Krantz S.G., “On a Theorem of F. Forelli and a Result of Hartogs”, Complex Var. Elliptic Equ., 63:4 (2018), 591–597  crossref  mathscinet  zmath  isi  scopus
    9. A. I. Aptekarev, V. K. Beloshapka, V. I. Buslaev, V. V. Goryainov, V. N. Dubinin, V. A. Zorich, N. G. Kruzhilin, S. Yu. Nemirovski, S. Yu. Orevkov, P. V. Paramonov, S. I. Pinchuk, A. S. Sadullaev, A. G. Sergeev, S. P. Suetin, A. B. Sukhov, K. Yu. Fedorovskiy, A. K. Tsikh, “Evgenii Mikhailovich Chirka (on his 75th birthday)”, Russian Math. Surveys, 73:6 (2018), 1137–1144  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. Ninh Van Thu, “On the Automorphism Group of a Certain Infinite Type Domain in C-2”, J. Math. Anal. Appl., 448:2 (2017), 1042–1060  crossref  mathscinet  zmath  isi  scopus
    11. Joo J.-Ch., Kim K.-T., Schmalz G., “On the generalization of Forelli?s theorem”, Math. Ann., 365:3-4 (2016), 1187–1200  crossref  mathscinet  zmath  isi  elib  scopus
    12. Jae-Cheon Joo, Kang-Tae Kim, Gerd Schmalz, “A generalization of Forelli's theorem”, Math. Ann., 355:3 (2013), 1171  crossref
    13. E. M. Chirka, “Holomorphic motions and uniformization of holomorphic families of Riemann surfaces”, Russian Math. Surveys, 67:6 (2012), 1091–1165  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    14. Marigo R., “A Hartogs type theorem for separately CR functions”, Israel J. Math., 178:1 (2010), 107–112  crossref  mathscinet  zmath  isi  scopus
    15. Kim Kang-Tae, Poletsky E., Schmalz G., “Functions holomorphic along holomorphic vector fields”, J. Geom. Anal., 19:3 (2009), 655–666  crossref  mathscinet  zmath  isi  scopus
    16. Baracco L., Zampieri G., “Separate holomorphic extension of CR functions”, Manuscripta Math., 128:4 (2009), 411–419  crossref  mathscinet  zmath  isi  scopus
    17. Isaev A.V., Kruzhilin N.G., “Proper actions of Lie groups of dimension $n^2+1$ on $n$-dimensional complex manifolds”, Israel J. Math., 172:1 (2009), 193–252  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:548
    Full-text PDF :230
    References:78
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025