Abstract:
The paper is of survey character. We present and discuss recent results concerning the extension of functions that admit holomorphic or plurisubharmonic extension in a fixed direction. These results are closely related to Hartogs' fundamental theorem, which states that if a function f(z), z=(z1,z2,…,zn), is holomorphic in a domain D⊂Cn in each variable zj, then it is holomorphic in D in the n-variable sense.
Citation:
A. S. Sadullaev, S. A. Imomkulov, “Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections”, Complex analysis and applications, Collected papers, Trudy Mat. Inst. Steklova, 253, Nauka, MAIK «Nauka/Inteperiodika», M., 2006, 158–174; Proc. Steklov Inst. Math., 253 (2006), 144–159
\Bibitem{SadImo06}
\by A.~S.~Sadullaev, S.~A.~Imomkulov
\paper Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections
\inbook Complex analysis and applications
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2006
\vol 253
\pages 158--174
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm91}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2338695}
\zmath{https://zbmath.org/?q=an:1351.32018}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 253
\pages 144--159
\crossref{https://doi.org/10.1134/S0081543806020131}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748333106}
Linking options:
https://www.mathnet.ru/eng/tm91
https://www.mathnet.ru/eng/tm/v253/p158
This publication is cited in the following 7 articles:
Sevdiyor Imomkulov, Sultanbay Abdikadirov, Rasul Sharipov, INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE ON ACTUAL PROBLEMS OF MATHEMATICAL MODELING AND INFORMATION TECHNOLOGY, 3147, INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE ON ACTUAL PROBLEMS OF MATHEMATICAL MODELING AND INFORMATION TECHNOLOGY, 2024, 020007
A. S. Sadullaev, “Golomorfnoe prodolzhenie funktsii vdol fiksirovannogo napravleniya (obzor)”, Nauka — tekhnologiya — obrazovanie — matematika — meditsina, SMFN, 68, no. 1, Rossiiskii universitet druzhby narodov, M., 2022, 127–143
Sevdiyor A. Imomkulov, Sultanbay M. Abdikadirov, “Removable singularities of separately harmonic functions”, Zhurn. SFU. Ser. Matem. i fiz., 14:3 (2021), 369–375
“a - SEPARATELY SUBHARMONIC FUNCTIONS.”, Central Asian Problems of Modern Science and Education, 2020, 66
A. Sadullaev, “Prodolzhenie analiticheskikh i plyurigarmonicheskikh funktsii po zadannomu napravleniyu metodom E. M. Chirki (obzor)”, Sovremennye problemy matematiki i fiziki, SMFN, 65, no. 1, Rossiiskii universitet druzhby narodov, M., 2019, 83–94
A. Sadullaev, Z. Ibragimov, “The class R and finely analytic functions”, Sb. Math., 209:8 (2018), 1234–1247
Azimbay Sadullaev, Zafar Ibragimov, Springer Proceedings in Mathematics & Statistics, 264, Algebra, Complex Analysis, and Pluripotential Theory, 2018, 191